論文の概要: Evolving winning strategies for Nim-like games
- arxiv url: http://arxiv.org/abs/2109.13109v1
- Date: Sat, 21 Aug 2021 16:58:45 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-17 21:01:50.180868
- Title: Evolving winning strategies for Nim-like games
- Title(参考訳): Nimライクゲームにおける勝利戦略の展開
- Authors: Mihai Oltean
- Abstract要約: 本稿では,Nimライクゲームにおける勝利戦略を計算するための進化的アプローチを提案する。
勝利戦略は、Multi Expression Programming(MEP)技術を用いて計算される。
提案した進化的アプローチは,Nimライクゲームにおける勝利戦略の計算に非常に適していることを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: An evolutionary approach for computing the winning strategy for Nim-like
games is proposed in this paper. The winning strategy is computed by using the
Multi Expression Programming (MEP) technique - a fast and efficient variant of
the Genetic Programming (GP). Each play strategy is represented by a
mathematical expression that contains mathematical operators (such as +, -, *,
mod, div, and , or, xor, not) and operands (encoding the current game state).
Several numerical experiments for computing the winning strategy for the Nim
game are performed. The computational effort needed for evolving a winning
strategy is reported. The results show that the proposed evolutionary approach
is very suitable for computing the winning strategy for Nim-like games.
- Abstract(参考訳): 本稿では,Nimライクゲームにおける勝利戦略を計算するための進化的アプローチを提案する。
勝利戦略は、遺伝的プログラミング(GP)の高速かつ効率的な変種であるMEP(Multi Expression Programming)技術を用いて計算される。
各プレイ戦略は、数学演算子(+, -, *, mod, div, and , or, xor, not など)とオペランド(現在のゲーム状態のエンコード)を含む数学的表現で表される。
Nimゲームの勝利戦略を計算するためのいくつかの数値実験を行う。
勝利戦略の進化に必要な計算労力を報告する。
その結果,提案手法はnim系ゲームにおける勝利戦略の計算に非常に適していることがわかった。
関連論文リスト
- Decoding Game: On Minimax Optimality of Heuristic Text Generation Strategies [7.641996822987559]
我々は,テキスト生成をストラテジストとネイチャーの2プレイヤーゼロサムゲームとして再定義する,包括的な理論的枠組みであるデコードゲームを提案する。
逆数自然は可能性に対して暗黙の正則化を課し、トラルニケーション正規化法は、この正則化の下での最適戦略の第一次近似である。
論文 参考訳(メタデータ) (2024-10-04T23:18:27Z) - Finding mixed-strategy equilibria of continuous-action games without
gradients using randomized policy networks [83.28949556413717]
グラデーションへのアクセスを伴わない連続アクションゲームのナッシュ平衡を近似的に計算する問題について検討する。
ニューラルネットワークを用いてプレイヤーの戦略をモデル化する。
本論文は、制約のない混合戦略と勾配情報のない一般的な連続アクションゲームを解決する最初の方法である。
論文 参考訳(メタデータ) (2022-11-29T05:16:41Z) - Portfolio Search and Optimization for General Strategy Game-Playing [58.896302717975445]
ローリングホライズン進化アルゴリズムに基づく最適化とアクション選択のための新しいアルゴリズムを提案する。
エージェントのパラメータとポートフォリオセットの最適化について,N-tuple Bandit Evolutionary Algorithmを用いて検討する。
エージェントの性能分析により,提案手法はすべてのゲームモードによく一般化し,他のポートフォリオ手法よりも優れることが示された。
論文 参考訳(メタデータ) (2021-04-21T09:28:28Z) - Generating Diverse and Competitive Play-Styles for Strategy Games [58.896302717975445]
ターン型戦略ゲーム(Tribes)のためのプログレッシブアンプランによるPortfolio Monte Carlo Tree Searchを提案する。
品質分散アルゴリズム(MAP-Elites)を使用して異なるプレイスタイルを実現し、競争レベルを維持しながらパラメータ化する方法を示します。
その結果,このアルゴリズムは,トレーニングに用いるレベルを超えて,幅広いゲームレベルにおいても,これらの目標を達成できることが示された。
論文 参考訳(メタデータ) (2021-04-17T20:33:24Z) - On the Impossibility of Convergence of Mixed Strategies with No Regret
Learning [10.515544361834241]
最適無後悔学習戦略の一般クラスから得られる混合戦略の収束特性について検討する。
各ステップに設定された情報を相手の実演の実証平均とする戦略のクラスを考察する。
論文 参考訳(メタデータ) (2020-12-03T18:02:40Z) - The Design Of "Stratega": A General Strategy Games Framework [62.997667081978825]
Strategaはターンベースおよびリアルタイム戦略ゲームを作成するためのフレームワークである。
このフレームワークは、統計的フォワードプランニング(SFP)エージェントに焦点を当てて構築されている。
我々は,このフレームワークとそのエージェントの開発が,戦略ゲームにおける複雑な意思決定プロセスの理解に役立つことを願っている。
論文 参考訳(メタデータ) (2020-09-11T20:02:00Z) - Learning to Play Sequential Games versus Unknown Opponents [93.8672371143881]
学習者が最初にプレーするゲームと、選択した行動に反応する相手との連続的なゲームについて考察する。
対戦相手の対戦相手列と対戦する際,学習者に対して新しいアルゴリズムを提案する。
我々の結果には、相手の反応の正則性に依存するアルゴリズムの後悔の保証が含まれている。
論文 参考訳(メタデータ) (2020-07-10T09:33:05Z) - Efficient exploration of zero-sum stochastic games [83.28949556413717]
ゲームプレイを通じて,ゲームの記述を明示せず,託宣のみにアクセス可能な,重要で一般的なゲーム解決環境について検討する。
限られたデュレーション学習フェーズにおいて、アルゴリズムは両方のプレイヤーのアクションを制御し、ゲームを学習し、それをうまくプレイする方法を学習する。
私たちのモチベーションは、クエリされた戦略プロファイルの支払いを評価するのにコストがかかる状況において、利用可能性の低い戦略を迅速に学習することにあります。
論文 参考訳(メタデータ) (2020-02-24T20:30:38Z) - Evolutionary Approach to Collectible Card Game Arena Deckbuilding using
Active Genes [1.027974860479791]
アリーナゲームモードでは、各試合に先立って、プレイヤーは以前知らなかった選択肢から1枚ずつデッキ選択カードを組み立てなければならない。
そこで本研究では,遺伝子型の世代別サブシーケンスのみに対する演算子の範囲を減らすために,活性遺伝子の概念を用いた進化的アルゴリズムの変種を提案する。
論文 参考訳(メタデータ) (2020-01-05T22:46:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。