論文の概要: When in Doubt: Improving Classification Performance with Alternating
Normalization
- arxiv url: http://arxiv.org/abs/2109.13449v1
- Date: Tue, 28 Sep 2021 02:55:42 GMT
- ステータス: 処理完了
- システム内更新日: 2021-09-29 15:00:48.794086
- Title: When in Doubt: Improving Classification Performance with Alternating
Normalization
- Title(参考訳): When in Doubt: 交替正規化による分類性能の向上
- Authors: Menglin Jia, Austin Reiter, Ser-Nam Lim, Yoav Artzi and Claire Cardie
- Abstract要約: 分類のための非パラメトリック後処理ステップである交互正規化(CAN)を用いた分類を導入する。
CANは、予測されたクラス確率分布を再調整することで、挑戦的な例の分類精度を向上させる。
多様な分類課題にまたがってその効果を実証的に示す。
- 参考スコア(独自算出の注目度): 57.39356691967766
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce Classification with Alternating Normalization (CAN), a
non-parametric post-processing step for classification. CAN improves
classification accuracy for challenging examples by re-adjusting their
predicted class probability distribution using the predicted class
distributions of high-confidence validation examples. CAN is easily applicable
to any probabilistic classifier, with minimal computation overhead. We analyze
the properties of CAN using simulated experiments, and empirically demonstrate
its effectiveness across a diverse set of classification tasks.
- Abstract(参考訳): 分類のための非パラメトリック後処理ステップである交互正規化(CAN)を用いた分類を導入する。
CANは, 高信頼度検証例の予測クラス分布を用いて, 予測クラス確率分布を再調整することにより, 挑戦例の分類精度を向上させる。
CANはどんな確率的分類器にも容易に適用でき、計算オーバーヘッドは最小限である。
シミュレーション実験を用いてcanの特性を解析し,様々な分類タスクでその効果を実証した。
関連論文リスト
- Mitigating Word Bias in Zero-shot Prompt-based Classifiers [55.60306377044225]
一致したクラス先行は、オラクルの上界性能と強く相関していることを示す。
また,NLPタスクに対するプロンプト設定において,一貫したパフォーマンス向上を示す。
論文 参考訳(メタデータ) (2023-09-10T10:57:41Z) - Parametric Classification for Generalized Category Discovery: A Baseline
Study [70.73212959385387]
Generalized Category Discovery (GCD)は、ラベル付きサンプルから学習した知識を用いて、ラベルなしデータセットで新しいカテゴリを発見することを目的としている。
パラメトリック分類器の故障を調査し,高品質な監視が可能であった場合の過去の設計選択の有効性を検証し,信頼性の低い疑似ラベルを重要課題として同定する。
エントロピー正規化の利点を生かし、複数のGCDベンチマークにおける最先端性能を実現し、未知のクラス数に対して強いロバスト性を示す、単純で効果的なパラメトリック分類法を提案する。
論文 参考訳(メタデータ) (2022-11-21T18:47:11Z) - Self-Certifying Classification by Linearized Deep Assignment [65.0100925582087]
そこで我々は,PAC-Bayesリスク認定パラダイム内で,グラフ上のメトリックデータを分類するための新しい深層予測器のクラスを提案する。
PAC-Bayesの最近の文献とデータに依存した先行研究に基づいて、この手法は仮説空間上の後続分布の学習を可能にする。
論文 参考訳(メタデータ) (2022-01-26T19:59:14Z) - On the rate of convergence of a classifier based on a Transformer
encoder [55.41148606254641]
最適誤分類確率に対する分類器の誤分類確率の収束率を分析する。
この分類器は,アポテリオリ確率が適切な階層的構成モデルを満たす場合,次元性の呪いを回避することができる。
論文 参考訳(メタデータ) (2021-11-29T14:58:29Z) - Unbiased Subdata Selection for Fair Classification: A Unified Framework
and Scalable Algorithms [0.8376091455761261]
このフレームワーク内の多くの分類モデルが混合整数凸プログラムとして再キャストできることを示した。
そして,提案問題において,分類結果の「解決不能な部分データ選択」が強く解決可能であることを示す。
これにより、分類インスタンスを解決するための反復精錬戦略(IRS)の開発を動機付けます。
論文 参考訳(メタデータ) (2020-12-22T21:09:38Z) - Interpretable Sequence Classification via Discrete Optimization [26.899228003677138]
医療監視や侵入検知といった多くの応用において、早期分類は介入を促すために不可欠である。
本研究では、進化する観測トレースから早期分類を好む配列分類器を学習する。
我々の分類器は解釈可能であり, 説明, 反実的推論, 人為的ループ修正を行う。
論文 参考訳(メタデータ) (2020-10-06T15:31:07Z) - Performance-Agnostic Fusion of Probabilistic Classifier Outputs [2.4206828137867107]
本稿では,1つのコンセンサスクラス予測を行うために,分類器の確率的出力を組み合わせる手法を提案する。
提案手法は,精度が性能指標である状況において有効である。
キャリブレーションされた確率を出力しないので、そのような確率がさらなる処理に必要となる状況には適さない。
論文 参考訳(メタデータ) (2020-09-01T16:53:29Z) - Certified Robustness to Label-Flipping Attacks via Randomized Smoothing [105.91827623768724]
機械学習アルゴリズムは、データ中毒攻撃の影響を受けやすい。
任意の関数に対するランダム化スムージングの統一的なビューを示す。
本稿では,一般的なデータ中毒攻撃に対して,ポイントワイズで確実に堅牢な分類器を構築するための新しい戦略を提案する。
論文 参考訳(メタデータ) (2020-02-07T21:28:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。