論文の概要: An Automated Approach to Causal Inference in Discrete Settings
- arxiv url: http://arxiv.org/abs/2109.13471v1
- Date: Tue, 28 Sep 2021 03:55:32 GMT
- ステータス: 処理完了
- システム内更新日: 2021-09-29 14:51:51.080317
- Title: An Automated Approach to Causal Inference in Discrete Settings
- Title(参考訳): 離散的設定における因果推論の自動的アプローチ
- Authors: Guilherme Duarte, Noam Finkelstein, Dean Knox, Jonathan Mummolo, Ilya
Shpitser
- Abstract要約: 本稿では,効率的な二重緩和法と空間分岐結合法を用いて因果効果を自動的に結合するアルゴリズムを提案する。
このアルゴリズムは、許容可能なデータ生成プロセスを探索し、利用可能な情報と最も正確な範囲を出力する。
これは、不完全境界を特徴付ける$epsilon$-sharpnessと呼ばれる追加の保証を提供する。
- 参考スコア(独自算出の注目度): 8.242194776558895
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: When causal quantities cannot be point identified, researchers often pursue
partial identification to quantify the range of possible values. However, the
peculiarities of applied research conditions can make this analytically
intractable. We present a general and automated approach to causal inference in
discrete settings. We show causal questions with discrete data reduce to
polynomial programming problems, and we present an algorithm to automatically
bound causal effects using efficient dual relaxation and spatial
branch-and-bound techniques. The user declares an estimand, states assumptions,
and provides data (however incomplete or mismeasured). The algorithm then
searches over admissible data-generating processes and outputs the most precise
possible range consistent with available information -- i.e., sharp bounds --
including a point-identified solution if one exists. Because this search can be
computationally intensive, our procedure reports and continually refines
non-sharp ranges that are guaranteed to contain the truth at all times, even
when the algorithm is not run to completion. Moreover, it offers an additional
guarantee we refer to as $\epsilon$-sharpness, characterizing the worst-case
looseness of the incomplete bounds. Analytically validated simulations show the
algorithm accommodates classic obstacles, including confounding, selection,
measurement error, noncompliance, and nonresponse.
- Abstract(参考訳): 因果量の特定ができない場合、研究者はしばしば、可能な値の範囲を定量化するために部分的識別を追求する。
しかし, 応用研究条件の特異性は解析的に難解である。
個別設定における因果推論の汎用的かつ自動的アプローチを提案する。
離散データを用いた因果問題を多項式計画問題に還元し,効率的な双対緩和と空間分断法を用いて因果効果を自動的に拘束するアルゴリズムを提案する。
ユーザは見積を宣言し、仮定を述べ、データを提供する(不完全または誤測定)。
アルゴリズムは、許容可能なデータ生成プロセスを検索し、利用可能な情報(すなわちシャープ境界)と一致する最も正確な範囲を出力する。
この検索は計算量が多いため、アルゴリズムが完了まで実行されていなくても、常に真理を含むことが保証される非シャープ範囲を報告し、継続的に洗練します。
さらに、$\epsilon$-sharpnessと呼ばれる追加の保証を提供し、不完全な境界の最悪の場合の緩みを特徴付ける。
解析的に検証されたシミュレーションは、このアルゴリズムが古典的な障害に対応していることを示している。
関連論文リスト
- Accelerated zero-order SGD under high-order smoothness and overparameterized regime [79.85163929026146]
凸最適化問題を解くための新しい勾配のないアルゴリズムを提案する。
このような問題は医学、物理学、機械学習で発生する。
両種類の雑音下で提案アルゴリズムの収束保証を行う。
論文 参考訳(メタデータ) (2024-11-21T10:26:17Z) - Sound Heuristic Search Value Iteration for Undiscounted POMDPs with Reachability Objectives [16.101435842520473]
本稿では,POMDPにおける最大到達可能性確率問題(indefinite-horizon)と呼ばれる問題について検討する。
割引問題に対するポイントベース手法の成功に触発され,MRPPへの拡張について検討した。
本稿では,これらの手法の強みを有効活用し,信念空間を効率的に探索するアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-06-05T02:33:50Z) - Bisimulation Learning [55.859538562698496]
我々は、大きな、潜在的に無限の状態空間を持つ状態遷移系の有限バイシミュレートを計算する。
提案手法は,実際に行われている他の最先端ツールよりも高速な検証結果が得られる。
論文 参考訳(メタデータ) (2024-05-24T17:11:27Z) - Synthesizing Tight Privacy and Accuracy Bounds via Weighted Model Counting [5.552645730505715]
2つの中核的な課題は、DPアルゴリズムの分布の表現的でコンパクトで効率的な符号化を見つけることである。
プライバシーと正確性に縛られた合成法を開発することで、最初の課題に対処する。
DPアルゴリズムに固有の対称性を活用するためのフレームワークを開発する。
論文 参考訳(メタデータ) (2024-02-26T19:29:46Z) - When can you trust feature selection? -- I: A condition-based analysis
of LASSO and generalised hardness of approximation [49.1574468325115]
近似入力を読み取る際に、LASSOのミニミサの正しいサポートセットを(確率$>1/2$で)決定できないことを示す。
不適切な入力の場合、アルゴリズムは永遠に動作するので、間違った答えを出すことはない。
無限条件数を持つ点を含む開集合上で定義される任意のアルゴリズムに対して、アルゴリズムが永久に実行されるか、間違った解を生成するような入力が存在する。
論文 参考訳(メタデータ) (2023-12-18T18:29:01Z) - Encoding of data sets and algorithms [0.0]
多くの高インパクトアプリケーションにおいて、機械学習アルゴリズムの出力品質を保証することが重要である。
我々は、ある指標の観点から、どのモデルが互いに近いかを決定するために、数学的に厳密な理論を開始した。
このグリッドに作用する所定のしきい値メートル法は、それぞれのアルゴリズムと関心のデータセットから、任意のアプリケーションに近接性(または統計的距離)を表現します。
論文 参考訳(メタデータ) (2023-03-02T05:29:27Z) - Learning to Bound Counterfactual Inference in Structural Causal Models
from Observational and Randomised Data [64.96984404868411]
我々は、従来のEMベースのアルゴリズムを拡張するための全体的なデータの特徴付けを導出する。
新しいアルゴリズムは、そのような混合データソースからモデルパラメータの(不特定性)領域を近似することを学ぶ。
反実的な結果に間隔近似を与え、それが特定可能な場合の点に崩壊する。
論文 参考訳(メタデータ) (2022-12-06T12:42:11Z) - Anomaly Detection via Controlled Sensing and Deep Active Inference [43.07302992747749]
本稿では,与えられたプロセス群の中で異常なプロセスを見つけることを目的とした異常検出問題に対処する。
我々は,各瞬間にどの過程を探索して異常を検出するかを決定するシーケンシャルな選択アルゴリズムを開発した。
本アルゴリズムは,自由エネルギーの概念を最大化するために逐次的決定を行う一般的なフレームワークであるアクティブ推論に基づいている。
論文 参考訳(メタデータ) (2021-05-12T17:54:02Z) - Global Optimization of Objective Functions Represented by ReLU Networks [77.55969359556032]
ニューラルネットワークは複雑で非敵対的な関数を学ぶことができ、安全クリティカルな文脈でそれらの正しい振る舞いを保証することは困難である。
ネットワーク内の障害を見つけるための多くのアプローチ(例えば、敵の例)があるが、これらは障害の欠如を保証できない。
本稿では,最適化プロセスを検証手順に統合し,本手法よりも優れた性能を実現する手法を提案する。
論文 参考訳(メタデータ) (2020-10-07T08:19:48Z) - Adaptive Sampling for Best Policy Identification in Markov Decision
Processes [79.4957965474334]
本稿では,学習者が生成モデルにアクセスできる場合の,割引マルコフ決定(MDP)における最良の政治的識別の問題について検討する。
最先端アルゴリズムの利点を論じ、解説する。
論文 参考訳(メタデータ) (2020-09-28T15:22:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。