論文の概要: Improved prediction rule ensembling through model-based data generation
- arxiv url: http://arxiv.org/abs/2109.13672v1
- Date: Tue, 28 Sep 2021 12:44:10 GMT
- ステータス: 処理完了
- システム内更新日: 2021-09-29 20:07:12.496018
- Title: Improved prediction rule ensembling through model-based data generation
- Title(参考訳): モデルに基づくデータ生成による予測規則の合理化
- Authors: Benny Markovitch, Marjolein Fokkema
- Abstract要約: 予測規則アンサンブル(PRE)は比較的高い精度で解釈可能な予測モデルを提供する。
ブーストされた)決定木アンサンブルから多数の決定ルールを求め、ラッソペナル化回帰のスパーススルー適用を実現する。
本稿では,大容量データセットの助けを借りてLasso回帰を訓練するPrepreの性能向上のための代理モデルの利用について検討する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Prediction rule ensembles (PRE) provide interpretable prediction models with
relatively high accuracy.PRE obtain a large set of decision rules from a
(boosted) decision tree ensemble, and achieves sparsitythrough application of
Lasso-penalized regression. This article examines the use of surrogate modelsto
improve performance of PRE, wherein the Lasso regression is trained with the
help of a massivedataset generated by the (boosted) decision tree ensemble.
This use of model-based data generationmay improve the stability and
consistency of the Lasso step, thus leading to improved overallperformance. We
propose two surrogacy approaches, and evaluate them on simulated and
existingdatasets, in terms of sparsity and predictive accuracy. The results
indicate that the use of surrogacymodels can substantially improve the sparsity
of PRE, while retaining predictive accuracy, especiallythrough the use of a
nested surrogacy approach.
- Abstract(参考訳): 予測規則アンサンブル(pre)は、比較的高い精度で解釈可能な予測モデルを提供し、(ブーストされた)決定木アンサンブルから大量の決定規則を取得し、ラッソペナライズ回帰の適用をスパーシティスルーで達成する。
本稿では,Prepreの性能向上のための代理モデルの利用について検討し,Lasso回帰は(ブーストされた)決定木アンサンブルによって生成された大規模データセットの助けを借りて訓練する。
このモデルベースのデータ生成は、Lassoステップの安定性と一貫性を改善し、全体的なパフォーマンスを向上させる。
本稿では,2つのサロガシー手法を提案し,これらをシミュレーションおよび既存データセット上で,空間性および予測精度の観点から評価する。
その結果,特にネスト型サロガシーアプローチを用いて,予測精度を維持しつつも,サロガシーモデルを用いることでpreのスパース性が大幅に向上することが示唆された。
関連論文リスト
- Ranking and Combining Latent Structured Predictive Scores without Labeled Data [2.5064967708371553]
本稿では,新しい教師なしアンサンブル学習モデル(SUEL)を提案する。
連続的な予測スコアを持つ予測器のセット間の依存関係を利用して、ラベル付きデータなしで予測器をランク付けし、それらをアンサンブルされたスコアに重み付けする。
提案手法の有効性は、シミュレーション研究とリスク遺伝子発見の現実的応用の両方を通じて厳密に評価されている。
論文 参考訳(メタデータ) (2024-08-14T20:14:42Z) - Predictive Churn with the Set of Good Models [64.05949860750235]
近似機械学習モデルの集合に対する競合予測の効果について検討する。
ラーショモン集合内のモデル間の係り受けに関する理論的結果を示す。
当社のアプローチは、コンシューマ向けアプリケーションにおいて、より予測し、削減し、混乱を避けるためにどのように使用できるかを示します。
論文 参考訳(メタデータ) (2024-02-12T16:15:25Z) - Beyond mirkwood: Enhancing SED Modeling with Conformal Predictions [0.0]
SEDフィッティングにおける柔軟性と不確実性を向上する,高度な機械学習ベースのアプローチを提案する。
我々は、整合化量子レグレッションを組み込んで、点予測をエラーバーに変換し、解釈可能性と信頼性を向上させる。
論文 参考訳(メタデータ) (2023-12-21T11:27:20Z) - Learning Sample Difficulty from Pre-trained Models for Reliable
Prediction [55.77136037458667]
本稿では,大規模事前学習モデルを用いて,サンプル難易度を考慮したエントロピー正規化による下流モデルトレーニングを指導する。
我々は、挑戦的なベンチマークで精度と不確実性の校正を同時に改善する。
論文 参考訳(メタデータ) (2023-04-20T07:29:23Z) - Prediction-Oriented Bayesian Active Learning [51.426960808684655]
予測情報ゲイン(EPIG)は、パラメータではなく予測空間における情報ゲインを測定する。
EPIGは、さまざまなデータセットやモデルにわたるBALDと比較して、予測パフォーマンスが向上する。
論文 参考訳(メタデータ) (2023-04-17T10:59:57Z) - Improving Adaptive Conformal Prediction Using Self-Supervised Learning [72.2614468437919]
我々は、既存の予測モデルの上に自己教師付きプレテキストタスクを持つ補助モデルを訓練し、自己教師付きエラーを付加的な特徴として用いて、非整合性スコアを推定する。
合成データと実データの両方を用いて、効率(幅)、欠陥、共形予測間隔の超過といった付加情報の利点を実証的に実証する。
論文 参考訳(メタデータ) (2023-02-23T18:57:14Z) - Robust self-healing prediction model for high dimensional data [0.685316573653194]
本研究は、ロバスト自己治癒(RSH)ハイブリッド予測モデルを提案する。
それは、データを捨てるのではなく、エラーや不整合を取り除くことによって、データ全体を活用することによって機能する。
提案手法は,既存のハイパフォーマンスモデルと比較し,解析を行った。
論文 参考訳(メタデータ) (2022-10-04T17:55:50Z) - Explainable boosted linear regression for time series forecasting [0.1876920697241348]
時系列予測では、過去の観測を収集し分析し、将来の観測を外挿するモデルを開発する。
時系列予測のための説明可能な強化線形回帰(EBLR)アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-09-18T22:31:42Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
後続正則化に基づく近似ベイズ推定法を開発した。
前立腺癌の予後モデルを世界規模で導入する上で,本手法の有用性を実証する。
論文 参考訳(メタデータ) (2020-06-26T13:50:19Z) - Efficient Ensemble Model Generation for Uncertainty Estimation with
Bayesian Approximation in Segmentation [74.06904875527556]
アンサンブルセグメンテーションモデルを構築するための汎用的で効率的なセグメンテーションフレームワークを提案する。
提案手法では,層選択法を用いて効率よくアンサンブルモデルを生成することができる。
また,新たな画素単位の不確実性損失を考案し,予測性能を向上する。
論文 参考訳(メタデータ) (2020-05-21T16:08:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。