論文の概要: Prediction-Oriented Bayesian Active Learning
- arxiv url: http://arxiv.org/abs/2304.08151v1
- Date: Mon, 17 Apr 2023 10:59:57 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-18 15:35:17.119395
- Title: Prediction-Oriented Bayesian Active Learning
- Title(参考訳): 予測指向ベイズアクティブラーニング
- Authors: Freddie Bickford Smith, Andreas Kirsch, Sebastian Farquhar, Yarin Gal,
Adam Foster, Tom Rainforth
- Abstract要約: 予測情報ゲイン(EPIG)は、パラメータではなく予測空間における情報ゲインを測定する。
EPIGは、さまざまなデータセットやモデルにわたるBALDと比較して、予測パフォーマンスが向上する。
- 参考スコア(独自算出の注目度): 51.426960808684655
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Information-theoretic approaches to active learning have traditionally
focused on maximising the information gathered about the model parameters, most
commonly by optimising the BALD score. We highlight that this can be suboptimal
from the perspective of predictive performance. For example, BALD lacks a
notion of an input distribution and so is prone to prioritise data of limited
relevance. To address this we propose the expected predictive information gain
(EPIG), an acquisition function that measures information gain in the space of
predictions rather than parameters. We find that using EPIG leads to stronger
predictive performance compared with BALD across a range of datasets and
models, and thus provides an appealing drop-in replacement.
- Abstract(参考訳): アクティブラーニングに対する情報理論的なアプローチは、伝統的にモデルパラメータに関する情報を最大化することに焦点を当ててきた。
これは予測性能の観点からは最適ではないことを強調する。
例えば、BALDは入力分布の概念を欠いているため、限られた関連性のデータを優先する傾向がある。
そこで我々は,パラメータではなく予測空間における情報ゲインを測定する獲得関数である予測情報ゲイン(epig)を提案する。
EPIGを使用することで、さまざまなデータセットやモデルにわたるBALDと比較して予測性能が向上し、魅力的なドロップイン置換が可能になることが分かりました。
関連論文リスト
- Optimizing LLMs with Direct Preferences: A Data Efficiency Perspective [4.548047308860141]
本研究では,異なる種類の嗜好データがモデル性能に与える影響について検討する。
収集に費用がかかる大量の好みデータへの依存を減らすことを目的としている。
論文 参考訳(メタデータ) (2024-10-22T00:11:41Z) - Self-Augmented Preference Optimization: Off-Policy Paradigms for Language Model Alignment [104.18002641195442]
既存のペアデータを必要としない、効果的でスケーラブルなトレーニングパラダイムである自己拡張型優先度最適化(SAPO)を導入する。
負の反応を自律的に生成するセルフプレイの概念に基づいて、我々はさらに、データ探索とエクスプロイトを強化するために、非政治的な学習パイプラインを組み込む。
論文 参考訳(メタデータ) (2024-05-31T14:21:04Z) - Informed Spectral Normalized Gaussian Processes for Trajectory Prediction [0.0]
本稿では,SNGPの正規化に基づく連続学習手法を提案する。
提案手法は確立された手法に基づいており,リハーサルメモリやパラメータ拡張を必要としない。
本研究では, 自律運転における軌道予測問題に対する情報SNGPモデルの適用について検討した。
論文 参考訳(メタデータ) (2024-03-18T17:05:24Z) - A Closer Look at the Few-Shot Adaptation of Large Vision-Language Models [19.17722702457403]
現状のArtETLアプローチは、狭義の実験的な設定でのみ強力な性能を示すことを示す。
一般化されたラグランジアン法を適応させることにより,バランス項を最適化したCLAP(CLass-Adaptive linear Probe)の目的を提案する。
論文 参考訳(メタデータ) (2023-12-20T02:58:25Z) - PPI++: Efficient Prediction-Powered Inference [31.403415618169433]
PPI++: 小さなラベル付きデータセットと、通常より大きな機械学習予測データセットに基づく推定と推測の方法論を提案する。
これらの手法は、利用可能な予測の品質に自動的に適応し、容易に計算可能な信頼セットを得る。
PPI++は予測駆動推論(PPI)に基づいており、同じ問題設定をターゲットとし、計算効率と統計効率を改善している。
論文 参考訳(メタデータ) (2023-11-02T17:59:04Z) - ASPEST: Bridging the Gap Between Active Learning and Selective
Prediction [56.001808843574395]
選択予測は、不確実な場合の予測を棄却する信頼性のあるモデルを学ぶことを目的としている。
アクティブラーニングは、最も有意義な例を問うことで、ラベリングの全体、すなわち人間の依存度を下げることを目的としている。
本研究では,移動対象領域からより情報のあるサンプルを検索することを目的とした,新たな学習パラダイムである能動的選択予測を導入する。
論文 参考訳(メタデータ) (2023-04-07T23:51:07Z) - Preference Enhanced Social Influence Modeling for Network-Aware Cascade
Prediction [59.221668173521884]
本稿では,ユーザの嗜好モデルを強化することで,カスケードサイズ予測を促進する新しいフレームワークを提案する。
エンド・ツー・エンドの手法により,ユーザの情報拡散プロセスがより適応的で正確になる。
論文 参考訳(メタデータ) (2022-04-18T09:25:06Z) - Improved prediction rule ensembling through model-based data generation [0.0]
予測規則アンサンブル(PRE)は比較的高い精度で解釈可能な予測モデルを提供する。
ブーストされた)決定木アンサンブルから多数の決定ルールを求め、ラッソペナル化回帰のスパーススルー適用を実現する。
本稿では,大容量データセットの助けを借りてLasso回帰を訓練するPrepreの性能向上のための代理モデルの利用について検討する。
論文 参考訳(メタデータ) (2021-09-28T12:44:10Z) - Supervised PCA: A Multiobjective Approach [70.99924195791532]
制御主成分分析法(SPCA)
本研究では,これらの目的を両立させる新しいSPCA手法を提案する。
この手法は、任意の教師付き学習損失に対応し、統計的再構成により、一般化された線形モデルの新しい低ランク拡張を提供する。
論文 参考訳(メタデータ) (2020-11-10T18:46:58Z) - Learnable Bernoulli Dropout for Bayesian Deep Learning [53.79615543862426]
Learnable Bernoulli Dropout (LBD) は、他のモデルパラメータと共に最適化されたパラメータとしてドロップアウト率を考慮する新しいモデルに依存しないドロップアウトスキームである。
LBDは画像分類とセマンティックセグメンテーションにおける精度と不確実性の推定を改善する。
論文 参考訳(メタデータ) (2020-02-12T18:57:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。