論文の概要: Anomaly Detection for High-Dimensional Data Using Large Deviations
Principle
- arxiv url: http://arxiv.org/abs/2109.13698v1
- Date: Tue, 28 Sep 2021 13:13:14 GMT
- ステータス: 処理完了
- システム内更新日: 2021-09-29 14:56:17.404042
- Title: Anomaly Detection for High-Dimensional Data Using Large Deviations
Principle
- Title(参考訳): 大偏差原理を用いた高次元データの異常検出
- Authors: Sreelekha Guggilam and Varun Chandola and Abani Patra
- Abstract要約: 大規模偏差理論の概念を用いて高次元データにスケール可能な異常検出アルゴリズムを提案する。
提案した大規模偏差異常検出(LAD)アルゴリズムは,多種多様な大規模および高次元のベンチマークデータセットにおいて,アート異常検出手法の精度に優れることを示した。
- 参考スコア(独自算出の注目度): 0.8526086056172273
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Most current anomaly detection methods suffer from the curse of
dimensionality when dealing with high-dimensional data. We propose an anomaly
detection algorithm that can scale to high-dimensional data using concepts from
the theory of large deviations. The proposed Large Deviations Anomaly Detection
(LAD) algorithm is shown to outperform state of art anomaly detection methods
on a variety of large and high-dimensional benchmark data sets. Exploiting the
ability of the algorithm to scale to high-dimensional data, we propose an
online anomaly detection method to identify anomalies in a collection of
multivariate time series. We demonstrate the applicability of the online
algorithm in identifying counties in the United States with anomalous trends in
terms of COVID-19 related cases and deaths. Several of the identified anomalous
counties correlate with counties with documented poor response to the COVID
pandemic.
- Abstract(参考訳): 現在の異常検出手法のほとんどは、高次元データを扱う際の次元の呪いに苦しむ。
大規模偏差理論の概念を用いて高次元データにスケール可能な異常検出アルゴリズムを提案する。
提案する大偏差異常検出 (lad) アルゴリズムは, 様々な大規模・高次元ベンチマークデータセットにおいて, アート異常検出法に勝ることを示した。
本研究では,高次元データにスケールするアルゴリズムの能力を生かして,多変量時系列の集まりにおける異常を識別するオンライン異常検出手法を提案する。
本研究は、新型コロナウイルス関連事例と死亡の点から、米国内の郡を異常な傾向で特定する上で、オンラインアルゴリズムの適用性を示す。
特定された郡のいくつかは、新型コロナウイルスのパンデミックに対する反応が乏しい郡と相関している。
関連論文リスト
- Unsupervised Anomaly Detection Using Diffusion Trend Analysis [48.19821513256158]
本稿では, 劣化度に応じて, 復元傾向の分析により異常を検出する手法を提案する。
提案手法は,産業用異常検出のためのオープンデータセット上で検証される。
論文 参考訳(メタデータ) (2024-07-12T01:50:07Z) - Anomaly Detection Based on Isolation Mechanisms: A Survey [13.449446806837422]
分離に基づく教師なし異常検出は、データの異常を識別するための新しく効果的なアプローチである。
本稿では,データ分割戦略,異常スコア関数,アルゴリズムの詳細など,最先端の分離に基づく異常検出手法について概説する。
論文 参考訳(メタデータ) (2024-03-16T04:29:21Z) - AnomalyDiffusion: Few-Shot Anomaly Image Generation with Diffusion Model [59.08735812631131]
製造業において異常検査が重要な役割を担っている。
既存の異常検査手法は、異常データが不足しているため、その性能に制限がある。
本稿では,新しい拡散型マイクロショット異常生成モデルであるAnomalyDiffusionを提案する。
論文 参考訳(メタデータ) (2023-12-10T05:13:40Z) - AGAD: Adversarial Generative Anomaly Detection [12.68966318231776]
異常検出は,異常の多様性と大規模異常データ取得の困難さにより異常の欠如に悩まされた。
本稿では,自己コントラストに基づく異常検出パラダイムであるAdversarial Generative Anomaly Detection (AGAD)を提案する。
本手法は,教師付きおよび半教師付き両方の異常検出シナリオに対して擬似異常データを生成する。
論文 参考訳(メタデータ) (2023-04-09T10:40:02Z) - From Unsupervised to Few-shot Graph Anomaly Detection: A Multi-scale
Contrastive Learning Approach [49.439021563395976]
グラフデータからの異常検出は、ソーシャルネットワーク、金融、eコマースなど、多くのアプリケーションにおいて重要なデータマイニングタスクである。
マルチスケールcONtrastive lEarning(略してANEMONE)を用いた新しいフレームワーク, graph Anomaly dEtection フレームワークを提案する。
グラフニューラルネットワークをバックボーンとして、複数のグラフスケール(ビュー)から情報をエンコードすることで、グラフ内のノードのより良い表現を学習する。
論文 参考訳(メタデータ) (2022-02-11T09:45:11Z) - Explainable Deep Few-shot Anomaly Detection with Deviation Networks [123.46611927225963]
本稿では,弱い教師付き異常検出フレームワークを導入し,検出モデルを訓練する。
提案手法は,ラベル付き異常と事前確率を活用することにより,識別正規性を学習する。
我々のモデルはサンプル効率が高く頑健であり、クローズドセットとオープンセットの両方の設定において最先端の競合手法よりもはるかに優れている。
論文 参考訳(メタデータ) (2021-08-01T14:33:17Z) - DASVDD: Deep Autoencoding Support Vector Data Descriptor for Anomaly
Detection [9.19194451963411]
半教師付き異常検出は、通常のデータに基づいて訓練されたモデルを用いて、通常のサンプルから異常を検出することを目的としている。
本稿では,自己エンコーダのパラメータを協調的に学習する手法であるDASVDDを提案する。
論文 参考訳(メタデータ) (2021-06-09T21:57:41Z) - Sub-clusters of Normal Data for Anomaly Detection [0.15229257192293197]
データ分析における異常検出は、現実のアプリケーションでは興味深いが、それでも難しい研究トピックである。
既存の異常検出手法は、ImageNetのような高次元データによる限られた性能を示す。
本稿では,高次元および複雑な正規データを用いた異常検出について検討する。
論文 参考訳(メタデータ) (2020-11-17T03:53:31Z) - Algorithmic Frameworks for the Detection of High Density Anomalies [0.0]
高密度異常(英: high-density anomalies)は、データ空間の最も正常な領域に位置する不確定なケースである。
本研究では、教師なし検出のための非パラメトリックアルゴリズムフレームワークをいくつか導入する。
論文 参考訳(メタデータ) (2020-10-09T17:48:02Z) - TadGAN: Time Series Anomaly Detection Using Generative Adversarial
Networks [73.01104041298031]
TadGANは、GAN(Generative Adversarial Networks)上に構築された教師なしの異常検出手法である。
時系列の時間相関を捉えるために,ジェネレータと批評家のベースモデルとしてLSTMリカレントニューラルネットワークを用いる。
提案手法の性能と一般化性を示すため,いくつかの異常スコアリング手法を検証し,最も適した手法を報告する。
論文 参考訳(メタデータ) (2020-09-16T15:52:04Z) - Toward Deep Supervised Anomaly Detection: Reinforcement Learning from
Partially Labeled Anomaly Data [150.9270911031327]
本稿では,一部のラベル付き異常事例と大規模ラベルなしデータセットを用いた異常検出の問題点について考察する。
既存の関連手法は、通常、一連の異常にまたがらない限られた異常例にのみ適合するか、ラベルのないデータから教師なしの学習を進めるかのいずれかである。
そこで本研究では,ラベル付きおよびラベルなし両方の異常の検出をエンドツーエンドに最適化する,深層強化学習に基づくアプローチを提案する。
論文 参考訳(メタデータ) (2020-09-15T03:05:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。