論文の概要: Unsupervised Anomaly Detection Using Diffusion Trend Analysis
- arxiv url: http://arxiv.org/abs/2407.09578v1
- Date: Fri, 12 Jul 2024 01:50:07 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-16 21:38:05.876682
- Title: Unsupervised Anomaly Detection Using Diffusion Trend Analysis
- Title(参考訳): 拡散傾向解析を用いた教師なし異常検出
- Authors: Eunwoo Kim, Un Yang, Cheol Lae Roh, Stefano Ermon,
- Abstract要約: 本稿では, 劣化度に応じて, 復元傾向の分析により異常を検出する手法を提案する。
提案手法は,産業用異常検出のためのオープンデータセット上で検証される。
- 参考スコア(独自算出の注目度): 48.19821513256158
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Conventional anomaly detection techniques based on reconstruction via denoising diffusion model are widely used due to their ability to identify anomaly locations and shapes with high performance. However, there is a limitation in determining appropriate noise parameters that can degrade anomalies while preserving normal characteristics. Also, due to the volatility of the diffusion model, normal regions can fluctuate considerably during reconstruction, resulting in false detection. In this paper, we propose a method to detect anomalies by analysis of reconstruction trend depending on the degree of degradation, effectively solving the both problems of existing methods. The proposed method is validated on an open dataset for industrial anomaly detection, improving the performance of existing methods on a number of evaluation criteria. With the ease of combination with existing anomaly detection methods, it provides a tradeoff between computational cost and performance, allowing it high application potential in manufacturing industry.
- Abstract(参考訳): 拡散モデルによる再構成に基づく従来の異常検出技術は, 異常位置や形状を高い性能で識別できるため, 広く用いられている。
しかし、正常な特性を維持しながら異常を分解できる適切なノイズパラメータを決定するには限界がある。
また,拡散モデルのボラティリティにより,再建時に正常領域がかなり変動し,誤検出が生じる。
本稿では, 劣化度に応じて復元傾向を分析し, 既存手法の両問題を効果的に解決し, 異常検出手法を提案する。
提案手法は,産業的異常検出のためのオープンデータセット上で検証され,多くの評価基準に基づいて既存手法の性能を向上させる。
既存の異常検出手法と簡単に組み合わせることで、計算コストと性能のトレードオフを提供し、製造業における高い応用可能性を実現する。
関連論文リスト
- Adversarially Robust Industrial Anomaly Detection Through Diffusion Model [23.97654469255749]
そこで本研究では, 拡散モデルを用いて, 逆解析器と逆解析器の両方を動作させることができる, 簡易かつ効果的な逆解析手法である textitAdvRAD を提案する。
提案手法は,産業用異常検出ベンチマークデータセットの最先端手法と同等に強い異常検出性能を維持しつつ,優れた(認証された)対向性を示す。
論文 参考訳(メタデータ) (2024-08-09T03:25:19Z) - Enhancing Multi-Class Anomaly Detection via Diffusion Refinement with Dual Conditioning [30.4548093767138]
一モデル毎の手法は、しばしば限定的な一般化能力に苦しむ。
近年の1モデルオールカテゴリ方式の特徴再構築手法は, 異常サンプルの再構成やぼやけた再構築といった課題に直面している。
本稿では,多クラス異常検出のための拡散モデルと変圧器を創造的に組み合わせる。
論文 参考訳(メタデータ) (2024-07-02T03:09:40Z) - AnomalyDiffusion: Few-Shot Anomaly Image Generation with Diffusion Model [59.08735812631131]
製造業において異常検査が重要な役割を担っている。
既存の異常検査手法は、異常データが不足しているため、その性能に制限がある。
本稿では,新しい拡散型マイクロショット異常生成モデルであるAnomalyDiffusionを提案する。
論文 参考訳(メタデータ) (2023-12-10T05:13:40Z) - Video Anomaly Detection via Spatio-Temporal Pseudo-Anomaly Generation : A Unified Approach [49.995833831087175]
本研究は,画像のマスキング領域にペンキを塗布することにより,汎用的な映像時間PAを生成する手法を提案する。
さらに,OCC設定下での現実世界の異常を検出するための単純な統合フレームワークを提案する。
提案手法は,OCC設定下での既存のPAs生成および再構築手法と同等に動作する。
論文 参考訳(メタデータ) (2023-11-27T13:14:06Z) - An Iterative Method for Unsupervised Robust Anomaly Detection Under Data
Contamination [24.74938110451834]
ほとんどの深層異常検出モデルは、データセットから正規性を学ぶことに基づいている。
実際、正規性仮定は実データ分布の性質によってしばしば破られる。
このギャップを減らし、より優れた正規性表現を実現するための学習フレームワークを提案する。
論文 参考訳(メタデータ) (2023-09-18T02:36:19Z) - Noise-to-Norm Reconstruction for Industrial Anomaly Detection and
Localization [5.101905755052051]
異常検出は幅広い応用があり、特に工業品質検査において重要である。
再構成に基づく手法では, サンプルの位置差を考慮せずに, 再構成誤差を用いて異常を検出する。
本研究では, 異常領域の不変な再構成を回避するため, ノイズ・ツー・ノーム・パラダイムを用いた再構成手法を提案する。
論文 参考訳(メタデータ) (2023-07-06T08:06:48Z) - DiffusionAD: Norm-guided One-step Denoising Diffusion for Anomaly
Detection [89.49600182243306]
我々は拡散モデルを用いて再構成過程をノイズ・ツー・ノームパラダイムに再構成する。
本稿では,拡散モデルにおける従来の反復的復調よりもはるかに高速な高速な一段階復調パラダイムを提案する。
セグメント化サブネットワークは、入力画像とその異常のない復元を用いて画素レベルの異常スコアを予測する。
論文 参考訳(メタデータ) (2023-03-15T16:14:06Z) - The role of noise in denoising models for anomaly detection in medical
images [62.0532151156057]
病理脳病変は脳画像に多彩な外観を示す。
正規データのみを用いた教師なし異常検出手法が提案されている。
空間分解能の最適化と雑音の大きさの最適化により,異なるモデル学習体制の性能が向上することを示す。
論文 参考訳(メタデータ) (2023-01-19T21:39:38Z) - Self-Supervised Training with Autoencoders for Visual Anomaly Detection [61.62861063776813]
我々は, 正規サンプルの分布を低次元多様体で支持する異常検出において, 特定のユースケースに焦点を当てた。
我々は、訓練中に識別情報を活用する自己指導型学習体制に適応するが、通常の例のサブ多様体に焦点をあてる。
製造領域における視覚異常検出のための挑戦的なベンチマークであるMVTec ADデータセットで、最先端の新たな結果を達成する。
論文 参考訳(メタデータ) (2022-06-23T14:16:30Z) - DR{\AE}M -- A discriminatively trained reconstruction embedding for
surface anomaly detection [14.234783431842542]
識別訓練された再構成異常埋め込みモデル(DRAEM)を提案する。
DRAEMは、異常画像とその異常のない再構成の合同表現を学習し、同時に、正常例と異常例の判定境界を学習する。
挑戦的なMVTec異常検出データセットでは、DRAEMは現在の最先端の教師なし手法よりも大きなマージンで優れている。
論文 参考訳(メタデータ) (2021-08-17T13:17:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。