論文の概要: PFENet++: Boosting Few-shot Semantic Segmentation with the
Noise-filtered Context-aware Prior Mask
- arxiv url: http://arxiv.org/abs/2109.13788v2
- Date: Tue, 21 Nov 2023 09:08:50 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-23 06:17:55.827338
- Title: PFENet++: Boosting Few-shot Semantic Segmentation with the
Noise-filtered Context-aware Prior Mask
- Title(参考訳): PFENet++: ノイズフィルタ付きコンテキスト認識マスクによるFew-shot Semantic Segmentationの強化
- Authors: Xiaoliu Luo, Zhuotao Tian, Taiping Zhang, Bei Yu, Yuan Yan Tang, Jiaya
Jia
- Abstract要約: 「Few-Shot」のためのガイド機能強化ネットワークで提案された以前のマスクガイダンスを再考する。
本稿では,クエリ画像中のオブジェクトの配置を改善するために,近隣のセマンティックキューを活用するコンテキスト対応プリエントマスク(CAPM)を提案する。
我々は、不要な応答をスクリーニングするために、軽量ノイズ抑圧モジュール(NSM)を組み込むことにより、さらに一歩前進する。
- 参考スコア(独自算出の注目度): 62.37727055343632
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this work, we revisit the prior mask guidance proposed in ``Prior Guided
Feature Enrichment Network for Few-Shot Segmentation''. The prior mask serves
as an indicator that highlights the region of interests of unseen categories,
and it is effective in achieving better performance on different frameworks of
recent studies. However, the current method directly takes the maximum
element-to-element correspondence between the query and support features to
indicate the probability of belonging to the target class, thus the broader
contextual information is seldom exploited during the prior mask generation. To
address this issue, first, we propose the Context-aware Prior Mask (CAPM) that
leverages additional nearby semantic cues for better locating the objects in
query images. Second, since the maximum correlation value is vulnerable to
noisy features, we take one step further by incorporating a lightweight Noise
Suppression Module (NSM) to screen out the unnecessary responses, yielding
high-quality masks for providing the prior knowledge. Both two contributions
are experimentally shown to have substantial practical merit, and the new model
named PFENet++ significantly outperforms the baseline PFENet as well as all
other competitors on three challenging benchmarks PASCAL-5$^i$, COCO-20$^i$ and
FSS-1000. The new state-of-the-art performance is achieved without compromising
the efficiency, manifesting the potential for being a new strong baseline in
few-shot semantic segmentation. Our code will be available at
https://github.com/luoxiaoliu/PFENet2Plus.
- Abstract(参考訳): 本研究では,<Prior Guided Feature Enrichment Network for Few-Shot Segmentation'で提案されているマスクガイダンスについて再検討する。
先行マスクは、目に見えないカテゴリの関心領域を強調する指標として機能し、近年の研究の異なるフレームワークでより良いパフォーマンスを達成するのに有効である。
しかし、現在の方法は、クエリーとサポート機能の間の最大要素間対応を直接受け取り、ターゲットクラスに属する確率を示すため、より広い文脈情報を以前のマスク生成中に悪用することがほとんどない。
この問題に対処するために,まず,クエリ画像中のオブジェクトをよりよく特定するために,近接する意味的手がかりを利用するコンテキストアウェア・プリエントマスク(capm)を提案する。
第二に、最大相関値がノイズに弱いため、不要な応答を遮蔽するために軽量ノイズ抑圧モジュール(NSM)を組み込むことにより、先行知識を提供するための高品質マスクが得られる。
PFENet++という新しいモデルは、PASCAL-5$^i$, COCO-20$^i$, FSS-1000という3つの挑戦的なベンチマークにおいて、PFENetのベースラインであるPFENetよりもはるかに優れている。
新しい最先端のパフォーマンスは効率を損なうことなく達成され、数ショットのセマンティックセグメンテーションにおいて新しい強力なベースラインになる可能性を示している。
私たちのコードはhttps://github.com/luoxiaoliu/pfenet2plusで利用可能です。
関連論文リスト
- ColorMAE: Exploring data-independent masking strategies in Masked AutoEncoders [53.3185750528969]
Masked AutoEncoders (MAE)は、堅牢な自己管理フレームワークとして登場した。
データに依存しないColorMAEという手法を導入し、ランダムノイズをフィルタすることで異なる二元マスクパターンを生成する。
ランダムマスキングと比較して,下流タスクにおける戦略の優位性を示す。
論文 参考訳(メタデータ) (2024-07-17T22:04:00Z) - Variance-insensitive and Target-preserving Mask Refinement for
Interactive Image Segmentation [68.16510297109872]
ポイントベースのインタラクティブなイメージセグメンテーションは、セマンティックセグメンテーションや画像編集といったアプリケーションにおけるマスクアノテーションの負担を軽減することができる。
本稿では,ユーザ入力の少ないセグメンテーション品質を向上する新しい手法である可変無感・ターゲット保存マスクリファインメントを提案する。
GrabCut、バークレー、SBD、DAVISデータセットの実験は、インタラクティブな画像セグメンテーションにおける我々の手法の最先端性能を実証している。
論文 参考訳(メタデータ) (2023-12-22T02:31:31Z) - Temporal-aware Hierarchical Mask Classification for Video Semantic
Segmentation [62.275143240798236]
ビデオセマンティックセグメンテーションデータセットは、ビデオ毎のカテゴリが限られている。
VSSトレーニング中に意味のある勾配更新を受けるために、クエリの10%未満がマッチする可能性がある。
提案手法は,最新のVSSベンチマークVSPWにおいてベルやホイッスルを使わずに,最先端の性能を実現する。
論文 参考訳(メタデータ) (2023-09-14T20:31:06Z) - MaskRange: A Mask-classification Model for Range-view based LiDAR
Segmentation [34.04740351544143]
本研究では,範囲ビューに基づくLiDARセマンティクスとパノプティックセグメンテーションのためのマスク分類モデルMaskRangeを提案する。
我々のMaskRangeは、セマンティックセグメンテーションにおける6.10ドルmIoUの最先端性能と、高い効率でパノプティクスセグメンテーションにおける53.10ドルPQの有望な結果を達成する。
論文 参考訳(メタデータ) (2022-06-24T04:39:49Z) - HMFS: Hybrid Masking for Few-Shot Segmentation [27.49000348046462]
我々は特徴マスキング(FM)を強化するためのシンプルで効果的で効率的なアプローチを開発した。
本研究では,FM法における微細な空間的詳細の損失を補足する基本入力マスキング手法の検証と活用により補足する。
3つの公開ベンチマークの実験結果から、HMFSは現在の最先端手法よりも目に見えるマージンで優れていることが明らかになった。
論文 参考訳(メタデータ) (2022-03-24T03:07:20Z) - SE-PSNet: Silhouette-based Enhancement Feature for Panoptic Segmentation
Network [5.353718408751182]
汎視的セグメンテーション課題に取り組むための解決策を提案する。
この構造はボトムアップ法とトップダウン法を組み合わせたものである。
ネットワークは主にマスクの品質に注意を払う。
論文 参考訳(メタデータ) (2021-07-11T17:20:32Z) - Spatiotemporal Graph Neural Network based Mask Reconstruction for Video
Object Segmentation [70.97625552643493]
本稿では,クラス非依存オブジェクトを半教師あり設定でセグメント化するタスクについて述べる。
提案手法のすべてを利用して局所的なコンテキストを捕捉する新しいグラフニューラルネットワーク(TG-Net)を提案する。
論文 参考訳(メタデータ) (2020-12-10T07:57:44Z) - Prior Guided Feature Enrichment Network for Few-Shot Segmentation [64.91560451900125]
最先端のセマンティックセグメンテーション手法は、良い結果を得るために十分なラベル付きデータを必要とする。
少数のラベル付きサポートサンプルを持つ新しいクラスに迅速に適応するモデルを学習することで,この問題に対処するためのショットセグメンテーションが提案されている。
これらのフレームワークは、高レベルのセマンティック情報の不適切な使用により、目に見えないクラスにおける一般化能力の低下という課題に直面している。
論文 参考訳(メタデータ) (2020-08-04T10:41:32Z) - EPSNet: Efficient Panoptic Segmentation Network with Cross-layer
Attention Fusion [5.815742965809424]
高速な推論速度でパノプティカルセグメンテーションタスクに取り組むために,EPSNet(Efficient Panoptic Network)を提案する。
基本的に、EPSNetはプロトタイプマスクとマスク係数の単純な線形結合に基づいてマスクを生成する。
共有プロトタイプの品質を高めるために,我々は"クロスレイヤーアテンション融合モジュール"と呼ばれるモジュールを採用した。
論文 参考訳(メタデータ) (2020-03-23T09:11:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。