論文の概要: Image scaling by de la Vall\'ee-Poussin filtered interpolation
- arxiv url: http://arxiv.org/abs/2109.13897v1
- Date: Tue, 28 Sep 2021 17:48:46 GMT
- ステータス: 処理完了
- システム内更新日: 2021-09-29 14:43:17.728956
- Title: Image scaling by de la Vall\'ee-Poussin filtered interpolation
- Title(参考訳): de la Vall\'ee-Poussinフィルタによる画像スケーリング
- Authors: Donatella Occorsio, Giuliana Ramella, Woula Themistoclakis
- Abstract要約: 本稿では,ダウンスケーリングとアップスケーリングを両立させ,任意のスケールファクタや所望のサイズで実行するための新しい画像スケーリング手法を提案する。
この手法は、多数の異なる画像データセットでテストされている。
得られたスケール画像の品質は、重要な詳細を保存し、アーティファクトの外観が低いほどである。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We present a new image scaling method both for downscaling and upscaling,
running with any scale factor or desired size. It is based on the sampling of
an approximating bivariate polynomial, which globally interpolates the data and
is defined by a filter of de la Vall\'ee Poussin type whose action ray is
suitable regulated to improve the approximation. The method has been tested on
a significant number of different image datasets. The results are evaluated in
qualitative and quantitative terms and compared with other available
competitive methods. The perceived quality of the resulting scaled images is
such that important details are preserved, and the appearance of artifacts is
low. Very high-quality measure values in downscaling and the competitive ones
in upscaling evidence the effectiveness of the method. Good visual quality,
limited computational effort, and moderate memory demanding make the method
suitable for real-world applications.
- Abstract(参考訳): ダウンスケーリングとアップスケーリングを両立させ,任意のスケールファクタや所望のサイズで実行する新しい画像スケーリング手法を提案する。
これは、世界規模でデータを補間し、近似を改善するのに適した作用線を持つ de la Vall\'ee Poussin 型のフィルタによって定義される近似二変数多項式のサンプリングに基づいている。
この手法は、多数の異なる画像データセットでテストされている。
結果は質的,定量的に評価され,他の競争法と比較される。
得られたスケール画像の品質は、重要な詳細が保存され、アーティファクトの外観が低くなるほどである。
ダウンスケーリングにおける非常に高品質な測定値と、アップスケーリングにおける競合値が、この方法の有効性を示している。
優れた視覚品質、限られた計算量、適度なメモリ要求により、この手法は現実世界のアプリケーションに適している。
関連論文リスト
- A consensus-constrained parsimonious Gaussian mixture model for
clustering hyperspectral images [0.0]
食品エンジニアは、ハイパースペクトル画像を使用して、食品サンプルのタイプと品質を分類する。
これらの手法を訓練するには、各トレーニング画像の各ピクセルにラベルを付ける必要がある。
ハイパースペクトル画像に画素をラベル付けするために, コンセンサス制約付き擬似ガウス混合モデル (ccPGMM) を提案する。
論文 参考訳(メタデータ) (2024-03-05T22:23:43Z) - Learning-Based and Quality Preserving Super-Resolution of Noisy Images [0.0]
本稿では,雑音の存在を考慮し,入力画像の特性を保存する学習手法を提案する。
Cineca Marconi100クラスタ上で、トップ500リストの26位でテストを行います。
論文 参考訳(メタデータ) (2023-11-03T22:00:50Z) - Deep Richardson-Lucy Deconvolution for Low-Light Image Deblurring [48.80983873199214]
我々は,飽和画素を学習潜時マップでモデル化するデータ駆動型手法を開発した。
新しいモデルに基づいて、非盲検除色タスクを最大後部(MAP)問題に定式化することができる。
増幅されたアーティファクトを使わずに高品質な劣化画像を推定するために,我々は事前推定ネットワークを構築した。
論文 参考訳(メタデータ) (2023-08-10T12:53:30Z) - PIQI: Perceptual Image Quality Index based on Ensemble of Gaussian
Process Regression [2.9412539021452715]
デジタル画像の品質を評価するためにPIQI(Perceptual Image Quality Index)を提案する。
PIQIの性能は6つのベンチマークデータベースでチェックされ、12の最先端の手法と比較される。
論文 参考訳(メタデータ) (2023-05-16T06:44:17Z) - Enhanced Sharp-GAN For Histopathology Image Synthesis [63.845552349914186]
病理組織像合成は、正確ながん検出のためのディープラーニングアプローチの訓練において、データ不足の問題に対処することを目的としている。
核トポロジと輪郭正則化を用いて合成画像の品質を向上させる新しい手法を提案する。
提案手法は、Sharp-GANを2つのデータセット上の4つの画像品質指標すべてで上回る。
論文 参考訳(メタデータ) (2023-01-24T17:54:01Z) - Probabilistic Deep Metric Learning for Hyperspectral Image
Classification [91.5747859691553]
本稿では,ハイパースペクトル画像分類のための確率論的深度学習フレームワークを提案する。
ハイパースペクトルセンサーが捉えた画像に対して、各ピクセルのカテゴリを予測することを目的としている。
我々のフレームワークは、既存のハイパースペクトル画像分類法に容易に適用できる。
論文 参考訳(メタデータ) (2022-11-15T17:57:12Z) - A novel information gain-based approach for classification and
dimensionality reduction of hyperspectral images [0.0]
本稿では,高スペクトル画像の次元化と分類のための情報ゲインに基づく新しいフィルタ手法を提案する。
ハイパースペクトル帯の選択に基づく特別な戦略が採用され、最も情報性の高いバンドを選択し、無関係でノイズの多いバンドを捨てる。
提案手法は,2つのベンチマークハイパースペクトルデータセット(インド,パヴィア)と3つの競合する手法を用いて比較する。
論文 参考訳(メタデータ) (2022-10-26T20:59:57Z) - Fast Hybrid Image Retargeting [0.0]
本稿では,コンテント・アウェア・トリミングを用いて歪みを定量化し,抑制する手法を提案する。
我々の手法は,実行時間のごく一部で実行しながら,最近の手法より優れています。
論文 参考訳(メタデータ) (2022-03-25T11:46:06Z) - Towards Bidirectional Arbitrary Image Rescaling: Joint Optimization and
Cycle Idempotence [76.93002743194974]
本稿では、任意の再スケーリング(アップスケーリングとダウンスケーリングの両方)を統一プロセスとして扱う方法を提案する。
提案モデルでは、アップスケーリングとダウンスケーリングを同時に学習し、双方向の任意のイメージ再スケーリングを実現する。
繰り返しにダウンスケーリング・アップスケーリング・サイクルが適用された場合, 復元精度が著しく低下することなく, サイクルイデオポテンス試験において堅牢であることが確認された。
論文 参考訳(メタデータ) (2022-03-02T07:42:15Z) - PixelPyramids: Exact Inference Models from Lossless Image Pyramids [58.949070311990916]
Pixel-Pyramidsは、画像画素の関節分布を符号化するスケール特異的表現を用いたブロック自動回帰手法である。
様々な画像データセット、特に高解像度データに対する密度推定の最先端結果が得られる。
CelebA-HQ 1024 x 1024 では,フローベースモデルの並列化よりもサンプリング速度が優れているにもかかわらず,密度推定値がベースラインの 44% に向上することが観察された。
論文 参考訳(メタデータ) (2021-10-17T10:47:29Z) - A Hierarchical Transformation-Discriminating Generative Model for Few
Shot Anomaly Detection [93.38607559281601]
各トレーニングイメージのマルチスケールパッチ分布をキャプチャする階層的生成モデルを開発した。
この異常スコアは、スケール及び画像領域にわたる正しい変換のパッチベースの投票を集約して得られる。
論文 参考訳(メタデータ) (2021-04-29T17:49:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。