論文の概要: Local Repair of Neural Networks Using Optimization
- arxiv url: http://arxiv.org/abs/2109.14041v1
- Date: Tue, 28 Sep 2021 20:52:26 GMT
- ステータス: 処理完了
- システム内更新日: 2021-09-30 14:35:12.080510
- Title: Local Repair of Neural Networks Using Optimization
- Title(参考訳): 最適化によるニューラルネットワークの局所的修復
- Authors: Keyvan Majd, Siyu Zhou, Heni Ben Amor, Georgios Fainekos, and Sriram
Sankaranarayanan
- Abstract要約: トレーニング済みフィードフォワードニューラルネットワーク(NN)を修復する枠組みを提案する。
対象の入力領域に対してNNの出力に制約を課す述語の一式としてプロパティを定式化する。
本稿では,アフィン変換のバウンダリング,誤分類NNの修正,NNコントローラのインプットのバウンダリングにおけるフレームワークの適用例を示す。
- 参考スコア(独自算出の注目度): 13.337627875398393
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we propose a framework to repair a pre-trained feed-forward
neural network (NN) to satisfy a set of properties. We formulate the properties
as a set of predicates that impose constraints on the output of NN over the
target input domain. We define the NN repair problem as a Mixed Integer
Quadratic Program (MIQP) to adjust the weights of a single layer subject to the
given predicates while minimizing the original loss function over the original
training domain. We demonstrate the application of our framework in bounding an
affine transformation, correcting an erroneous NN in classification, and
bounding the inputs of a NN controller.
- Abstract(参考訳): 本稿では,事前学習されたフィードフォワードニューラルネットワーク(nn)を修復し,その特性を満足する枠組みを提案する。
我々は、対象の入力ドメイン上でnnの出力に制約を課す述語の集合としてプロパティを定式化する。
nn修復問題を混合整数二次プログラム(miqp)として定義し、与えられた述語に対応する単層の重みを調整し、元の訓練領域上で元の損失関数を最小化する。
本稿では,アフィン変換のバウンダリング,誤分類NNの修正,NNコントローラの入力のバウンダリングにおけるフレームワークの適用例を示す。
関連論文リスト
- Initialization-enhanced Physics-Informed Neural Network with Domain Decomposition (IDPINN) [14.65008276932511]
予測精度を向上させるために,新しい物理インフォームドニューラルネットワークフレームワークIDPINNを提案する。
我々は,いくつかの前方問題に対して数値的に評価し,IDPINNの利点を精度で実証した。
論文 参考訳(メタデータ) (2024-06-05T12:03:45Z) - N-Adaptive Ritz Method: A Neural Network Enriched Partition of Unity for
Boundary Value Problems [1.2200609701777907]
本研究は,ニューラルネットワークによる境界値問題を解決するために,ニューラルネットワークに富んだユニティ分割(NN-PU)アプローチを導入する。
NNエンリッチメントは、事前訓練された特徴符号化NNブロックと未訓練NNブロックを組み合わせることで構成される。
提案手法は,従来のメッシュ法に比べて計算コストを低減しつつ,正確な解を提供する。
論文 参考訳(メタデータ) (2024-01-16T18:11:14Z) - Fixing the NTK: From Neural Network Linearizations to Exact Convex
Programs [63.768739279562105]
学習目標に依存しない特定のマスクウェイトを選択する場合、このカーネルはトレーニングデータ上のゲートReLUネットワークのNTKと等価であることを示す。
この目標への依存の欠如の結果として、NTKはトレーニングセット上の最適MKLカーネルよりもパフォーマンスが良くない。
論文 参考訳(メタデータ) (2023-09-26T17:42:52Z) - Benign Overfitting in Deep Neural Networks under Lazy Training [72.28294823115502]
データ分布が適切に分離された場合、DNNは分類のためのベイズ最適テスト誤差を達成できることを示す。
よりスムーズな関数との補間により、より一般化できることを示す。
論文 参考訳(メタデータ) (2023-05-30T19:37:44Z) - Safety Verification for Neural Networks Based on Set-boundary Analysis [5.487915758677295]
ニューラルネットワーク(NN)は、自動運転車のような安全クリティカルなシステムにますます適用されている。
本稿では, NNの安全性検証問題に対するトポロジ的視点から検討するための, 集合境界到達可能性法を提案する。
論文 参考訳(メタデータ) (2022-10-09T05:55:37Z) - Automated Repair of Neural Networks [0.26651200086513094]
安全でないNNの安全仕様を修復するためのフレームワークを提案する。
提案手法では,重み値のいくつかを修正して,新しい安全なNN表現を探索することができる。
我々は,提案するフレームワークが安全なNNを実現する能力を示す広範な実験を行った。
論文 参考訳(メタデータ) (2022-07-17T12:42:24Z) - Adaptive Self-supervision Algorithms for Physics-informed Neural
Networks [59.822151945132525]
物理情報ニューラルネットワーク(PINN)は、損失関数のソフト制約として問題領域からの物理的知識を取り入れている。
これらのモデルの訓練性に及ぼす座標点の位置の影響について検討した。
モデルがより高い誤りを犯している領域に対して、より多くのコロケーションポイントを段階的に割り当てる適応的コロケーション方式を提案する。
論文 参考訳(メタデータ) (2022-07-08T18:17:06Z) - On Feature Learning in Neural Networks with Global Convergence
Guarantees [49.870593940818715]
勾配流(GF)を用いた広帯域ニューラルネットワーク(NN)の最適化について検討する。
入力次元がトレーニングセットのサイズ以下である場合、トレーニング損失はGFの下での線形速度で0に収束することを示す。
また、ニューラル・タンジェント・カーネル(NTK)システムとは異なり、我々の多層モデルは特徴学習を示し、NTKモデルよりも優れた一般化性能が得られることを実証的に示す。
論文 参考訳(メタデータ) (2022-04-22T15:56:43Z) - Edge Rewiring Goes Neural: Boosting Network Resilience via Policy
Gradient [62.660451283548724]
ResiNetは、さまざまな災害や攻撃に対する回復力のあるネットワークトポロジを発見するための強化学習フレームワークである。
ResiNetは複数のグラフに対してほぼ最適のレジリエンス向上を実現し,ユーティリティのバランスを保ちながら,既存のアプローチに比べて大きなマージンを持つことを示す。
論文 参考訳(メタデータ) (2021-10-18T06:14:28Z) - Modeling from Features: a Mean-field Framework for Over-parameterized
Deep Neural Networks [54.27962244835622]
本稿では、オーバーパラメータ化ディープニューラルネットワーク(DNN)のための新しい平均場フレームワークを提案する。
このフレームワークでは、DNNは連続的な極限におけるその特徴に対する確率測度と関数によって表現される。
本稿では、標準DNNとResidual Network(Res-Net)アーキテクチャを通してフレームワークを説明する。
論文 参考訳(メタデータ) (2020-07-03T01:37:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。