論文の概要: Second Order WinoBias (SoWinoBias) Test Set for Latent Gender Bias
Detection in Coreference Resolution
- arxiv url: http://arxiv.org/abs/2109.14047v1
- Date: Tue, 28 Sep 2021 21:03:32 GMT
- ステータス: 処理完了
- システム内更新日: 2021-10-01 02:17:57.257031
- Title: Second Order WinoBias (SoWinoBias) Test Set for Latent Gender Bias
Detection in Coreference Resolution
- Title(参考訳): 2次WinoBias(SoWinoBias)テストセットによる遅延性バイアス検出
- Authors: Hillary Dawkins
- Abstract要約: テストケースでは, 性別による偏見が明らかでないにもかかわらず, 下流アプリケーションでは, 性別による偏見の事例を観察する。
我々は、コア参照解決システムにおいて、そのような潜在性バイアスを測定するために、SoWinoBiasというテストセットを提供する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We observe an instance of gender-induced bias in a downstream application,
despite the absence of explicit gender words in the test cases. We provide a
test set, SoWinoBias, for the purpose of measuring such latent gender bias in
coreference resolution systems. We evaluate the performance of current
debiasing methods on the SoWinoBias test set, especially in reference to the
method's design and altered embedding space properties. See
https://github.com/hillarydawkins/SoWinoBias.
- Abstract(参考訳): テストケースでは, 性別による偏見が明らかでないにもかかわらず, 下流アプリケーションでは, 性別による偏見の事例を観察する。
このような潜伏性バイアスを共参照分解系で測定するためのテストセットであるsowinobiasを提供する。
本稿では,SoWinoBiasテストセットにおける現在のデバイアス法の性能,特に手法の設計と組込み空間特性の変化について評価する。
https://github.com/hillarydawkins/sowinobiasを参照。
関連論文リスト
- Gender Bias Mitigation for Bangla Classification Tasks [2.6285986998314783]
バングラ語事前学習言語モデルにおける性別バイアスについて検討する。
名前と性別固有の用語を変更することで、これらのデータセットが性別バイアスを検出し緩和するのに適していることを確認した。
論文 参考訳(メタデータ) (2024-11-16T00:04:45Z) - GradBias: Unveiling Word Influence on Bias in Text-to-Image Generative Models [75.04426753720553]
開集合におけるバイアスを特定し,定量化し,説明するための枠組みを提案する。
このパイプラインはLarge Language Model (LLM)を活用して、一連のキャプションから始まるバイアスを提案する。
このフレームワークには、OpenBiasとGradBiasの2つのバリエーションがあります。
論文 参考訳(メタデータ) (2024-08-29T16:51:07Z) - GenderBias-\emph{VL}: Benchmarking Gender Bias in Vision Language Models via Counterfactual Probing [72.0343083866144]
本稿では,GenderBias-emphVLベンチマークを用いて,大規模視覚言語モデルにおける職業関連性バイアスの評価を行う。
ベンチマークを用いて15のオープンソースLVLMと最先端の商用APIを広範囲に評価した。
既存のLVLMでは男女差が広くみられた。
論文 参考訳(メタデータ) (2024-06-30T05:55:15Z) - Counter-GAP: Counterfactual Bias Evaluation through Gendered Ambiguous
Pronouns [53.62845317039185]
バイアス測定データセットは、言語モデルのバイアスされた振る舞いを検出する上で重要な役割を果たす。
本稿では, 多様な, 自然な, 最小限のテキストペアを, 対物生成によって収集する新しい手法を提案する。
事前学習された4つの言語モデルは、各グループ内よりも、異なる性別グループ間でかなり不整合であることを示す。
論文 参考訳(メタデータ) (2023-02-11T12:11:03Z) - MABEL: Attenuating Gender Bias using Textual Entailment Data [20.489427903240017]
我々は、文脈化表現における性別バイアスを軽減するための中間的事前学習手法であるMABELを提案する。
このアプローチの鍵となるのは、非現実的に強化されたジェンダーバランスのエンターメントペアに対して、対照的な学習目標を使用することである。
我々はMABELが従来のタスク非依存のデバイアスアプローチよりも公平性で優れていることを示す。
論文 参考訳(メタデータ) (2022-10-26T18:36:58Z) - Evaluating Gender Bias in Natural Language Inference [5.034017602990175]
推論による自然言語理解における性別バイアスの評価手法を提案する。
チャレンジタスクを使用して、職業を用いたジェンダーステレオタイプの存在に関する最先端のNLIモデルを調査します。
その結果,mnliとsnliデータセットでトレーニングされた3モデルでは,性別による予測誤差が有意に高いことが示唆された。
論文 参考訳(メタデータ) (2021-05-12T09:41:51Z) - The Gap on GAP: Tackling the Problem of Differing Data Distributions in
Bias-Measuring Datasets [58.53269361115974]
バイアスモデルを検出する診断データセットは、自然言語処理におけるバイアス低減の重要な前提条件である。
収集されたデータの望ましくないパターンは、そのようなテストを誤ったものにします。
実験データにおけるそのようなパターンに対処するために, 実験サンプルを重み付けする理論的基礎的手法を提案する。
論文 参考訳(メタデータ) (2020-11-03T16:50:13Z) - MDR Cluster-Debias: A Nonlinear WordEmbedding Debiasing Pipeline [3.180013942295509]
単語埋め込みの既存の手法は、しばしば表面的には、特定の性別とステレオタイプに結びついている単語は、デバイアスされた空間で一緒にクラスタ化される。
本稿では、この残差クラスタリングがなぜ存在するのか、どのように対処されるのかを考察する。
残留バイアスが存在する2つの潜在的な理由を特定し、このバイアスを軽減するために新しいパイプラインであるMDR Cluster-Debiasを開発する。
論文 参考訳(メタデータ) (2020-06-20T20:03:07Z) - Mitigating Gender Bias in Captioning Systems [56.25457065032423]
ほとんどのキャプションモデルは性別バイアスを学習し、特に女性にとって高い性別予測エラーにつながる。
本稿では, 視覚的注意を自己指導し, 正しい性的な視覚的証拠を捉えるためのガイド付き注意画像キャプチャーモデル(GAIC)を提案する。
論文 参考訳(メタデータ) (2020-06-15T12:16:19Z) - Double-Hard Debias: Tailoring Word Embeddings for Gender Bias Mitigation [94.98656228690233]
本稿では,性別サブスペースの推測と削除に先立って,コーパス正規性に対する単語埋め込みを浄化する手法を提案する。
本手法は,事前学習した単語埋め込みの分布的意味を保ちつつ,性別バイアスを従来の手法よりもはるかに大きい程度に低減する。
論文 参考訳(メタデータ) (2020-05-03T02:33:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。