論文の概要: GradBias: Unveiling Word Influence on Bias in Text-to-Image Generative Models
- arxiv url: http://arxiv.org/abs/2408.16700v1
- Date: Thu, 29 Aug 2024 16:51:07 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-30 12:51:37.108331
- Title: GradBias: Unveiling Word Influence on Bias in Text-to-Image Generative Models
- Title(参考訳): GradBias: テキスト・画像生成モデルにおけるバイアスに対する単語の影響を明らかにする
- Authors: Moreno D'Incà, Elia Peruzzo, Massimiliano Mancini, Xingqian Xu, Humphrey Shi, Nicu Sebe,
- Abstract要約: 開集合におけるバイアスを特定し,定量化し,説明するための枠組みを提案する。
このパイプラインはLarge Language Model (LLM)を活用して、一連のキャプションから始まるバイアスを提案する。
このフレームワークには、OpenBiasとGradBiasの2つのバリエーションがあります。
- 参考スコア(独自算出の注目度): 75.04426753720553
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Recent progress in Text-to-Image (T2I) generative models has enabled high-quality image generation. As performance and accessibility increase, these models are gaining significant attraction and popularity: ensuring their fairness and safety is a priority to prevent the dissemination and perpetuation of biases. However, existing studies in bias detection focus on closed sets of predefined biases (e.g., gender, ethnicity). In this paper, we propose a general framework to identify, quantify, and explain biases in an open set setting, i.e. without requiring a predefined set. This pipeline leverages a Large Language Model (LLM) to propose biases starting from a set of captions. Next, these captions are used by the target generative model for generating a set of images. Finally, Vision Question Answering (VQA) is leveraged for bias evaluation. We show two variations of this framework: OpenBias and GradBias. OpenBias detects and quantifies biases, while GradBias determines the contribution of individual prompt words on biases. OpenBias effectively detects both well-known and novel biases related to people, objects, and animals and highly aligns with existing closed-set bias detection methods and human judgment. GradBias shows that neutral words can significantly influence biases and it outperforms several baselines, including state-of-the-art foundation models. Code available here: https://github.com/Moreno98/GradBias.
- Abstract(参考訳): テキスト・ツー・イメージ(T2I)生成モデルの最近の進歩により,高品質な画像生成が可能になった。
パフォーマンスとアクセシビリティが向上するにつれて、これらのモデルは重要な魅力と人気を集めている。
しかし、バイアス検出に関する既存の研究は、事前に定義されたバイアス(例えば、性別、民族性)の閉集合に焦点を当てている。
本稿では,開集合におけるバイアスの特定,定量化,説明を行うための一般的な枠組みを提案する。
このパイプラインはLarge Language Model (LLM)を活用して、一連のキャプションから始まるバイアスを提案する。
次に、これらのキャプションは、一連の画像を生成するターゲット生成モデルによって使用される。
最後に、バイアス評価にVQA(Vision Question Answering)を利用する。
このフレームワークには、OpenBiasとGradBiasの2つのバリエーションがあります。
OpenBiasはバイアスを検出し定量化し、GradBiasはバイアスに対する個々のプロンプトワードの寄与を決定する。
OpenBiasは、人、物、動物に関連する、よく知られたバイアスと新しいバイアスの両方を効果的に検出し、既存のクローズドセットバイアス検出方法や人間の判断と高度に一致している。
GradBiasは、中立語はバイアスに大きく影響し、最先端の基礎モデルを含むいくつかのベースラインを上回っていることを示している。
コードは、https://github.com/Moreno98/GradBias.comで入手できる。
関連論文リスト
- Gender Bias Evaluation in Text-to-image Generation: A Survey [25.702257177921048]
テキスト・ツー・イメージ・ジェネレーションにおけるジェンダーバイアス評価に関する最近の研究についてレビューする。
安定拡散やDALL-E 2といった最近の人気モデルの評価に焦点をあてる。
論文 参考訳(メタデータ) (2024-08-21T06:01:23Z) - BIGbench: A Unified Benchmark for Social Bias in Text-to-Image Generative Models Based on Multi-modal LLM [8.24274551090375]
画像生成のバイアスの統一ベンチマークであるBIGbenchを紹介する。
既存のベンチマークとは異なり、BIGbenchは4次元にわたるバイアスを分類し評価する。
また, 蒸留効果や無関係な保護属性など, バイアスに関する新たな研究方向を明らかにした。
論文 参考訳(メタデータ) (2024-07-21T18:09:40Z) - OpenBias: Open-set Bias Detection in Text-to-Image Generative Models [108.2219657433884]
OpenBiasを提示するテキストから画像生成モデルにおけるオープンセットバイアス検出の課題に対処する。
OpenBiasは、事前コンパイルされた集合にアクセスすることなく、バイアスの深刻度を不可知的に識別し、定量化する。
本研究では, 安定拡散1.5, 2, XLの挙動について検討した。
論文 参考訳(メタデータ) (2024-04-11T17:59:56Z) - Quantifying Bias in Text-to-Image Generative Models [49.60774626839712]
テキスト・トゥ・イメージ(T2I)モデルにおけるバイアスは不公平な社会的表現を伝播させ、アイデアを積極的にマーケティングしたり、議論の的となっている議題を推進したりするのに用いられる。
既存のT2Iモデルバイアス評価手法は、社会的バイアスのみに焦点を当てる。
本稿では,T2I生成モデルにおける一般バイアスの定量化手法を提案する。
論文 参考訳(メタデータ) (2023-12-20T14:26:54Z) - Balancing the Picture: Debiasing Vision-Language Datasets with Synthetic
Contrast Sets [52.77024349608834]
視覚言語モデルは、インターネットから未計算の画像テキストペアの事前トレーニング中に学んだ社会的バイアスを永続し、増幅することができる。
COCO Captionsは、背景コンテキストとその場にいる人々の性別間のバイアスを評価するために最も一般的に使用されるデータセットである。
本研究では,COCOデータセットを男女バランスの取れたコントラストセットで拡張する新しいデータセットデバイアスパイプラインを提案する。
論文 参考訳(メタデータ) (2023-05-24T17:59:18Z) - Debiasing Vision-Language Models via Biased Prompts [79.04467131711775]
本稿では,テキスト埋め込みにおけるバイアスのある方向を投影することで,視覚言語基盤モデルを疎外する一般的な手法を提案する。
偏平投影行列を組み込んだテキストのみをデバイアスすることで、ロバストな分類器と公正な生成モデルが得られることを示す。
論文 参考訳(メタデータ) (2023-01-31T20:09:33Z) - Discovering and Mitigating Visual Biases through Keyword Explanation [66.71792624377069]
視覚バイアスをキーワードとして解釈するBias-to-Text(B2T)フレームワークを提案する。
B2Tは、CelebAの性別バイアス、ウォーターバードの背景バイアス、ImageNet-R/Cの分布シフトなど、既知のバイアスを特定することができる。
B2Tは、Dollar StreetやImageNetのような大きなデータセットで、新しいバイアスを明らかにする。
論文 参考訳(メタデータ) (2023-01-26T13:58:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。