論文の概要: Semantic Communications With AI Tasks
- arxiv url: http://arxiv.org/abs/2109.14170v1
- Date: Wed, 29 Sep 2021 03:33:40 GMT
- ステータス: 処理完了
- システム内更新日: 2021-09-30 14:50:16.741081
- Title: Semantic Communications With AI Tasks
- Title(参考訳): AIタスクによる意味コミュニケーション
- Authors: Yang Yang, Caili Guo, Fangfang Liu, Chuanhong Liu, Lunan Sun, Qizheng
Sun, Jiujiu Chen
- Abstract要約: 本稿では,人工知能タスク(SC-AIT)を用いた意味コミュニケーション手法を提案する。
実験の結果、SC-AITは帯域幅の要求がはるかに低く、40%以上の分類精度を達成できることがわかった。
- 参考スコア(独自算出の注目度): 10.631677914831533
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A radical paradigm shift of wireless networks from ``connected things'' to
``connected intelligence'' undergoes, which coincides with the Shanno and
Weaver's envisions: Communications will transform from the technical level to
the semantic level. This article proposes a semantic communication method with
artificial intelligence tasks (SC-AIT). First, the architecture of SC-AIT is
elaborated. Then, based on the proposed architecture, we implement SC-AIT for a
image classifications task. A prototype of SC-AIT is also established for
surface defect detection, is conducted. Experimental results show that SC-AIT
has much lower bandwidth requirements, and can achieve more than $40\%$
classification accuracy gains compared with the communications at the technical
level. Future trends and key challenges for semantic communications are also
identified.
- Abstract(参考訳): 無線ネットワークの「接続するもの」から「接続されたインテリジェンス」への急進的なパラダイムシフトは、シャンノやウィーバーの構想と一致する。
本稿では,人工知能タスク(SC-AIT)を用いた意味コミュニケーション手法を提案する。
まずSC-AITのアーキテクチャを詳述する。
次に,提案するアーキテクチャに基づき,画像分類タスクにsc-aitを実装する。
表面欠陥検出のためのSC-AITの試作も行われている。
実験の結果,SC-AITは帯域幅の要求がはるかに低く,技術レベルでの通信に比べて40\%以上の分類精度が得られることがわかった。
セマンティックコミュニケーションの今後の動向と課題も明らかにされる。
関連論文リスト
- Large Generative Model-assisted Talking-face Semantic Communication System [55.42631520122753]
本研究では,LGM-TSC(Large Generative Model-assisted Talking-face Semantic Communication)システムを提案する。
送信機のジェネレーティブセマンティック・エクストラクタ(GSE)は、意味的にスパースな音声映像を高情報密度のテキストに変換する。
意味的曖昧さと修正のためのLarge Language Model (LLM)に基づくPrivate Knowledge Base (KB)。
BERT-VITS2とSadTalkerモデルを用いた生成意味再構成(GSR)により、テキストを高QoE音声ビデオに変換する。
論文 参考訳(メタデータ) (2024-11-06T12:45:46Z) - IRS-Enhanced Secure Semantic Communication Networks: Cross-Layer and Context-Awared Resource Allocation [30.000606717755833]
eavesdroppingの課題は、無線通信のオープンな性質のため、セマンティックプライバシに深刻な脅威をもたらす。
本稿では,タスク指向のセマンティック視点から物理層セキュリティを保証するために,インテリジェント反射面(IRS)強化セキュアセマンティック通信(IRS-SSC)を提案する。
本研究では,高次元意味空間と可観測系状態空間を融合させる新しい意味認識状態空間(SCA-SS)を提案する。
論文 参考訳(メタデータ) (2024-11-04T05:40:30Z) - Trustworthy Image Semantic Communication with GenAI: Explainablity, Controllability, and Efficiency [59.15544887307901]
画像意味コミュニケーション(ISC)は,高効率な映像コンテンツ伝送を実現する可能性に注目されている。
既存のISCシステムは、解釈可能性、操作性、互換性の課題に直面している。
我々は、複数の下流推論タスクにGenerative Artificial Intelligence(GenAI)を利用する新しい信頼できるISCフレームワークを提案する。
論文 参考訳(メタデータ) (2024-08-07T14:32:36Z) - Agent-driven Generative Semantic Communication with Cross-Modality and Prediction [57.335922373309074]
本稿では,強化学習に基づくエージェント駆動型ジェネリックセマンティックコミュニケーションフレームワークを提案する。
本研究では, エージェント支援型セマンティックエンコーダを開発し, 適応的セマンティック抽出とサンプリングを行う。
設計モデルの有効性をUA-DETRACデータセットを用いて検証し、全体的なA-GSCフレームワークの性能向上を実証した。
論文 参考訳(メタデータ) (2024-04-10T13:24:27Z) - Causal Semantic Communication for Digital Twins: A Generalizable
Imitation Learning Approach [74.25870052841226]
デジタルツイン(DT)は、物理世界の仮想表現と通信(例えば6G)、コンピュータ、人工知能(AI)技術を活用して、多くの接続されたインテリジェンスサービスを実現する。
無線システムは、厳密な通信制約下での情報意思決定を容易にするために意味コミュニケーション(SC)のパラダイムを利用することができる。
DTベースの無線システムでは,因果意味通信(CSC)と呼ばれる新しいフレームワークが提案されている。
論文 参考訳(メタデータ) (2023-04-25T00:15:00Z) - Enabling the Wireless Metaverse via Semantic Multiverse Communication [82.47169682083806]
無線ネットワーク上のメタバースは、第6世代(6G)無線システムの新たなユースケースである。
メタバースを人間/機械エージェント固有のセマンティック・マルチバース(SM)に分解する新しいセマンティック・コミュニケーション・フレームワークを提案する。
各エージェントに格納されたSMは、セマンティックエンコーダとジェネレータから構成され、生成人工知能(AI)の最近の進歩を活用する。
論文 参考訳(メタデータ) (2022-12-13T21:21:07Z) - Model-based Deep Learning Receiver Design for Rate-Splitting Multiple
Access [65.21117658030235]
本研究では,モデルベース深層学習(MBDL)に基づく実用的なRSMA受信機の設計を提案する。
MBDL受信機は、符号なしシンボル誤り率(SER)、リンクレベルシミュレーション(LLS)によるスループット性能、平均トレーニングオーバーヘッドの観点から評価される。
その結果,MBDLはCSIRが不完全なSIC受信機よりも優れていた。
論文 参考訳(メタデータ) (2022-05-02T12:23:55Z) - Wireless Resource Management in Intelligent Semantic Communication
Networks [15.613654766345702]
ISC対応ヘテロジニアスネットワーク(ISC-HetNet)におけるユーザアソシエーション(UA)と帯域幅割り当ての問題に対処する。
目的を達成するためのプログラミング手法と、UAとBAの最適性に到達するための第2段階のアルゴリズムを含む2段階の解を提案する。
論文 参考訳(メタデータ) (2022-02-15T18:28:28Z) - Task-Oriented Image Transmission for Scene Classification in Unmanned
Aerial Systems [46.64800170644672]
シーン分類作業のための新しい航空画像伝送パラダイムを提案する。
画像やチャネル条件の認識を伴うセマンティックブロック伝送のための,フロントエンドUAV上での軽量モデルを開発した。
伝送遅延と分類精度のトレードオフを達成するために、深層強化学習を用いる。
論文 参考訳(メタデータ) (2021-12-21T02:44:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。