論文の概要: IRS-Enhanced Secure Semantic Communication Networks: Cross-Layer and Context-Awared Resource Allocation
- arxiv url: http://arxiv.org/abs/2411.01821v1
- Date: Mon, 04 Nov 2024 05:40:30 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-05 14:46:00.471466
- Title: IRS-Enhanced Secure Semantic Communication Networks: Cross-Layer and Context-Awared Resource Allocation
- Title(参考訳): IRSによるセキュアなセマンティック通信ネットワーク:クロス層とコンテキスト保証型リソースアロケーション
- Authors: Lingyi Wang, Wei Wu, Fuhui Zhou, Zhijin Qin, Qihui Wu,
- Abstract要約: eavesdroppingの課題は、無線通信のオープンな性質のため、セマンティックプライバシに深刻な脅威をもたらす。
本稿では,タスク指向のセマンティック視点から物理層セキュリティを保証するために,インテリジェント反射面(IRS)強化セキュアセマンティック通信(IRS-SSC)を提案する。
本研究では,高次元意味空間と可観測系状態空間を融合させる新しい意味認識状態空間(SCA-SS)を提案する。
- 参考スコア(独自算出の注目度): 30.000606717755833
- License:
- Abstract: Learning-task oriented semantic communication is pivotal in optimizing transmission efficiency by extracting and conveying essential semantics tailored to specific tasks, such as image reconstruction and classification. Nevertheless, the challenge of eavesdropping poses a formidable threat to semantic privacy due to the open nature of wireless communications. In this paper, intelligent reflective surface (IRS)-enhanced secure semantic communication (IRS-SSC) is proposed to guarantee the physical layer security from a task-oriented semantic perspective. Specifically, a multi-layer codebook is exploited to discretize continuous semantic features and describe semantics with different numbers of bits, thereby meeting the need for hierarchical semantic representation and further enhancing the transmission efficiency. Novel semantic security metrics, i.e., secure semantic rate (S-SR) and secure semantic spectrum efficiency (S-SSE), are defined to map the task-oriented security requirements at the application layer into the physical layer. To achieve artificial intelligence (AI)-native secure communication, we propose a noise disturbance enhanced hybrid deep reinforcement learning (NdeHDRL)-based resource allocation scheme. This scheme dynamically maximizes the S-SSE by jointly optimizing the bits for semantic representations, reflective coefficients of the IRS, and the subchannel assignment. Moreover, we propose a novel semantic context awared state space (SCA-SS) to fusion the high-dimensional semantic space and the observable system state space, which enables the agent to perceive semantic context and solves the dimensional catastrophe problem. Simulation results demonstrate the efficiency of our proposed schemes in both enhancing the security performance and the S-SSE compared to several benchmark schemes.
- Abstract(参考訳): 学習タスク指向のセマンティックコミュニケーションは、画像再構成や分類といった特定のタスクに適した本質的なセマンティクスを抽出し、伝達効率を最適化する上で重要である。
それでも、盗聴の難しさは、無線通信のオープンな性質のために、セマンティックプライバシに深刻な脅威をもたらす。
本稿では,タスク指向のセマンティック視点から物理層セキュリティを保証するために,インテリジェント反射面(IRS)強化セキュアセマンティック通信(IRS-SSC)を提案する。
具体的には、連続的な意味的特徴を識別し、異なるビット数で意味を記述し、階層的な意味表現の必要性を満たし、伝達効率をさらに高めるために多層コードブックを利用する。
アプリケーション層におけるタスク指向セキュリティ要件を物理層にマッピングするために、新しいセマンティックセキュリティメトリクス、すなわちセキュアセマンティックレート(S-SR)とセキュアセマンティックスペクトル効率(S-SSE)が定義される。
人工知能(AI)によるセキュアな通信を実現するため,NdeHDRLに基づく資源割り当て方式を提案する。
このスキームは、意味表現のビット、IRSの反射係数、サブチャネル割り当てを共同最適化することで、S-SSEを動的に最大化する。
さらに,高次元意味空間と可観測系状態空間を融合させる新しい意味文脈認識状態空間(SCA-SS)を提案する。
シミュレーションの結果,いくつかのベンチマーク方式と比較して,セキュリティ性能の向上とS-SSEの両面において提案手法の有効性が示された。
関連論文リスト
- Trustworthy Image Semantic Communication with GenAI: Explainablity, Controllability, and Efficiency [59.15544887307901]
画像意味コミュニケーション(ISC)は,高効率な映像コンテンツ伝送を実現する可能性に注目されている。
既存のISCシステムは、解釈可能性、操作性、互換性の課題に直面している。
我々は、複数の下流推論タスクにGenerative Artificial Intelligence(GenAI)を利用する新しい信頼できるISCフレームワークを提案する。
論文 参考訳(メタデータ) (2024-08-07T14:32:36Z) - Visual Language Model based Cross-modal Semantic Communication Systems [42.321208020228894]
本稿では,視覚言語モデルに基づくクロスモーダル・セマンティックコミュニケーションシステムを提案する。
VLM−CSCは、3つの新規成分を含む。
実験により, CSCシステムの有効性, 適応性, 堅牢性を検証した。
論文 参考訳(メタデータ) (2024-05-06T08:59:16Z) - Agent-driven Generative Semantic Communication with Cross-Modality and Prediction [57.335922373309074]
本稿では,強化学習に基づくエージェント駆動型ジェネリックセマンティックコミュニケーションフレームワークを提案する。
本研究では, エージェント支援型セマンティックエンコーダを開発し, 適応的セマンティック抽出とサンプリングを行う。
設計モデルの有効性をUA-DETRACデータセットを用いて検証し、全体的なA-GSCフレームワークの性能向上を実証した。
論文 参考訳(メタデータ) (2024-04-10T13:24:27Z) - Dynamic Relative Representations for Goal-Oriented Semantic Communications [13.994922919058922]
通信のセマンティクスと有効性は6G無線ネットワークにおいて基本的な役割を果たす。
潜時空間通信において、この課題は、ディープニューラルネットワークがデータをエンコードする高次元表現における誤調整として現れる。
本稿では,相対表現を利用して意味ミスマッチを緩和する,ゴール指向のセマンティックコミュニケーションのための新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2024-03-25T17:48:06Z) - Semantic Entropy Can Simultaneously Benefit Transmission Efficiency and Channel Security of Wireless Semantic Communications [55.54210451136529]
本稿では,適応トランスミッションと物理層暗号化の両方のためのセマンティクスを探索するためにSemEntropyを提案する。
セムエントロピーは意味論的精度を95%保ち、透過率を60%低減できることを示す。
論文 参考訳(メタデータ) (2024-02-05T12:25:02Z) - Adaptive Resource Allocation for Semantic Communication Networks [34.189531352110386]
本稿では,意味的量子化効率(SQE)や伝送遅延などのセマンティック通信ネットワークにおけるサービス品質について検討する。
全体として有効なSC-QoSを最大化する問題は、基地局、ビット意味表現、サブチャネル割り当て、およびセマンティックリソース割り当てを共同で送信することで定式化される。
本設計では, セマンティックノイズに効果的に対処でき, 無線通信において, 複数のベンチマーク方式と比較して優れた性能が得られる。
論文 参考訳(メタデータ) (2023-12-02T09:12:12Z) - SemProtector: A Unified Framework for Semantic Protection in Deep Learning-based Semantic Communication Systems [51.97204522852634]
3つのセマンティック・プロテクション・モジュールを用いたオンラインセマンティック・コミュニケーション・システムの実現を目的とした統合されたフレームワークを提案する。
具体的には、これらの保護モジュールは、暗号化方法によって送信されるセマンティクスを暗号化し、摂動機構によって無線チャネルからのプライバシーリスクを軽減し、目的地で歪んだセマンティクスを校正することができる。
我々のフレームワークは、既存のオンラインSCシステムにおいて、上記3つのプラグイン可能なモジュールを動的に組み立てて、カスタマイズされたセマンティックプロテクション要件を満たすことを可能にする。
論文 参考訳(メタデータ) (2023-09-04T06:34:43Z) - Blockchain-aided Secure Semantic Communication for AI-Generated Content
in Metaverse [59.04428659123127]
仮想交通ネットワークにおけるAIGCサービスのためのブロックチェーン支援セマンティックコミュニケーションフレームワークを提案する。
学習に基づくセマンティック・アタック・スキームを用いて,種々の損失関数を用いて,敵対的セマンティック・データを生成する。
また、ブロックチェーンとゼロ知識証明を用いて、敵対的セマンティックデータのセマンティック類似性の違いを識別するセマンティックディフェンススキームを設計する。
論文 参考訳(メタデータ) (2023-01-25T02:32:02Z) - SLLEN: Semantic-aware Low-light Image Enhancement Network [92.80325772199876]
LLEメインネットワーク(LLEmN)とSS補助ネットワーク(SSaN)からなる意味認識型LLEネットワーク(SSLEN)を開発する。
現在利用可能なアプローチとは異なり、提案されているSLLENは、LLEを支援するためにIEF、HSF、SSデータセットなどのセマンティック情報を完全に読み取ることができる。
提案したSLLENと他の最先端技術との比較により,LLEの品質に対するSLLENの優位性が示された。
論文 参考訳(メタデータ) (2022-11-21T15:29:38Z) - Reinforcement Learning-powered Semantic Communication via Semantic
Similarity [13.569045590522316]
我々は,ビットレベルの精度を厳格に確保する代わりに,セマンティック情報を保存するための新しいセマンティックコミュニケーション機構を導入する。
一般的に使用されるビットレベルのメトリクスは、重要な意味や構造を捉えるのに脆弱であることを示す。
ユーザ定義のセマンティック測定を同時に最適化できる強化学習(RL)ベースのソリューションを提案しました。
論文 参考訳(メタデータ) (2021-08-27T05:21:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。