論文の概要: YOLO-MST: Multiscale deep learning method for infrared small target detection based on super-resolution and YOLO
- arxiv url: http://arxiv.org/abs/2412.19878v1
- Date: Fri, 27 Dec 2024 18:43:56 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-31 22:07:02.393106
- Title: YOLO-MST: Multiscale deep learning method for infrared small target detection based on super-resolution and YOLO
- Title(参考訳): YOLO-MST:超解像とYOLOに基づく赤外小目標検出のためのマルチスケール深層学習法
- Authors: Taoran Yue, Xiaojin Lu, Jiaxi Cai, Yuanping Chen, Shibing Chu,
- Abstract要約: 本稿では,画像超解像技術とマルチスケール観測を組み合わせた深層学習赤外線小目標検出手法を提案する。
この手法の2つの公開データセットであるSIRSTとIRISでのmAP@0.5検出率は、それぞれ96.4%と99.5%に達した。
- 参考スコア(独自算出の注目度): 0.18641315013048293
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the advancement of aerospace technology and the increasing demands of military applications, the development of low false-alarm and high-precision infrared small target detection algorithms has emerged as a key focus of research globally. However, the traditional model-driven method is not robust enough when dealing with features such as noise, target size, and contrast. The existing deep-learning methods have limited ability to extract and fuse key features, and it is difficult to achieve high-precision detection in complex backgrounds and when target features are not obvious. To solve these problems, this paper proposes a deep-learning infrared small target detection method that combines image super-resolution technology with multi-scale observation. First, the input infrared images are preprocessed with super-resolution and multiple data enhancements are performed. Secondly, based on the YOLOv5 model, we proposed a new deep-learning network named YOLO-MST. This network includes replacing the SPPF module with the self-designed MSFA module in the backbone, optimizing the neck, and finally adding a multi-scale dynamic detection head to the prediction head. By dynamically fusing features from different scales, the detection head can better adapt to complex scenes. The mAP@0.5 detection rates of this method on two public datasets, SIRST and IRIS, reached 96.4% and 99.5% respectively, more effectively solving the problems of missed detection, false alarms, and low precision.
- Abstract(参考訳): 航空宇宙技術の進歩と軍事的応用の需要の増大により、世界中の研究の重要な焦点として、低い偽警報と高精度赤外線小目標検出アルゴリズムの開発が出現している。
しかし、従来のモデル駆動方式は、ノイズ、ターゲットサイズ、コントラストといった特徴を扱う場合、十分に堅牢ではない。
既存のディープラーニング手法では,鍵となる特徴を抽出・融合する能力が限られており,複雑な背景や対象特徴が明確でない場合には,高精度な検出が困難である。
これらの問題を解決するために,画像超解像技術とマルチスケール観測を組み合わせた深層学習赤外線小目標検出手法を提案する。
まず、入力された赤外線画像を超高解像度で前処理し、複数のデータ拡張を行う。
次に、YOLOv5モデルに基づいて、YOLO-MSTという新しいディープラーニングネットワークを提案する。
このネットワークは、SPPFモジュールをバックボーンの自設計のMSFAモジュールに置き換え、首を最適化し、最終的に予測ヘッドにマルチスケールの動的検出ヘッドを追加する。
異なるスケールの機能を動的に融合させることで、検出ヘッドは複雑なシーンに適応できる。
SIRSTとIRISの2つの公開データセット上のmAP@0.5検出レートはそれぞれ96.4%と99.5%に達し、誤り検出、誤報、低精度の問題を効果的に解決した。
関連論文リスト
- Enhanced Small Target Detection via Multi-Modal Fusion and Attention Mechanisms: A YOLOv5 Approach [1.90298817989995]
マルチモーダル画像融合とアテンション機構に基づく小さなターゲット検出手法を提案する。
この方法はYOLOv5を活用し、赤外線および可視光データと畳み込みアテンションモジュールを統合して検出性能を向上させる。
対UAVおよびVisdroneデータセットの実験結果は、我々のアプローチの有効性と実用性を示している。
論文 参考訳(メタデータ) (2025-04-15T15:02:10Z) - YOLO-RS: Remote Sensing Enhanced Crop Detection Methods [0.32985979395737786]
既存のターゲット検出手法は、リモートセンシング画像において、小さなターゲットを扱う際の性能が劣っている。
YOLO-RSは、小さなターゲットの検出を大幅に強化した最新のYolov11に基づいている。
リモートセンシング画像における小目標検出作業におけるYOLO-RSの有効性と適用可能性を検証する実験を行った。
論文 参考訳(メタデータ) (2025-04-15T13:13:22Z) - Oriented Tiny Object Detection: A Dataset, Benchmark, and Dynamic Unbiased Learning [51.170479006249195]
本研究では,新しいデータセット,ベンチマーク,動的粗大な学習手法を提案する。
提案するデータセットであるAI-TOD-Rは、すべてのオブジェクト指向オブジェクト検出データセットの中で最小のオブジェクトサイズを特徴としている。
完全教師付きおよびラベル効率の両アプローチを含む,幅広い検出パラダイムにまたがるベンチマークを提案する。
論文 参考訳(メタデータ) (2024-12-16T09:14:32Z) - Single-Point Supervised High-Resolution Dynamic Network for Infrared Small Target Detection [7.0456782736205685]
単一点教師付き高分解能ダイナミックネットワーク(SSHD-Net)を提案する。
単一点監視のみを用いて、最先端(SOTA)検出性能を実現する。
公開データセット NUDT-SIRST と IRSTD-1k の実験により,本手法の有効性が示された。
論文 参考訳(メタデータ) (2024-08-04T09:44:47Z) - Infrared Small Target Detection based on Adjustable Sensitivity Strategy and Multi-Scale Fusion [2.661766509317245]
調整可能な感度(AS)戦略とマルチスケール融合に基づく改良された赤外線小ターゲット検出手法を提案する。
具体的には、マルチスケール方向対応ネットワーク(MSDA-Net)に基づくマルチスケールモデル融合フレームワークを構築する。
このスキームは、PRCV 2024ワイドエリア赤外線小目標検出競技で優勝した。
論文 参考訳(メタデータ) (2024-07-29T15:22:02Z) - DASSF: Dynamic-Attention Scale-Sequence Fusion for Aerial Object Detection [6.635903943457569]
元のYOLOアルゴリズムは、異なるスケールのターゲットを認識する能力の弱いため、全体的な検出精度が低い。
本稿では,空中画像のターゲット検出のための動的アテンションスケール系列融合アルゴリズム(DASSF)を提案する。
DASSF法をYOLOv8nと比較すると,平均平均精度(mAP)は9.2%,2.4%増加した。
論文 参考訳(メタデータ) (2024-06-18T05:26:44Z) - SIRST-5K: Exploring Massive Negatives Synthesis with Self-supervised
Learning for Robust Infrared Small Target Detection [53.19618419772467]
単一フレーム赤外線小ターゲット検出(SIRST)は、乱雑な背景から小さなターゲットを認識することを目的としている。
Transformerの開発に伴い、SIRSTモデルのスケールは常に増大している。
赤外線小ターゲットデータの多彩な多様性により,本アルゴリズムはモデル性能と収束速度を大幅に改善する。
論文 参考訳(メタデータ) (2024-03-08T16:14:54Z) - Innovative Horizons in Aerial Imagery: LSKNet Meets DiffusionDet for
Advanced Object Detection [55.2480439325792]
本稿では,LSKNetのバックボーンをDiffusionDetヘッドに統合したオブジェクト検出モデルの詳細な評価を行う。
提案手法は平均精度(MAP)を約45.7%向上させる。
この進歩は、提案された修正の有効性を強調し、航空画像解析の新しいベンチマークを設定する。
論文 参考訳(メタデータ) (2023-11-21T19:49:13Z) - Enhancing Infrared Small Target Detection Robustness with Bi-Level
Adversarial Framework [61.34862133870934]
本稿では,異なる汚職の存在下での検出の堅牢性を促進するために,二段階の対向的枠組みを提案する。
我々の手法は広範囲の汚職で21.96%のIOUを著しく改善し、特に一般ベンチマークで4.97%のIOUを推進している。
論文 参考訳(メタデータ) (2023-09-03T06:35:07Z) - Small Object Detection via Coarse-to-fine Proposal Generation and
Imitation Learning [52.06176253457522]
本稿では,粗粒度パイプラインと特徴模倣学習に基づく小型物体検出に適した2段階フレームワークを提案する。
CFINetは、大規模な小さなオブジェクト検出ベンチマークであるSODA-DとSODA-Aで最先端の性能を達成する。
論文 参考訳(メタデータ) (2023-08-18T13:13:09Z) - EFLNet: Enhancing Feature Learning for Infrared Small Target Detection [20.546186772828555]
単一フレームの赤外線小目標検出は難しい課題であると考えられている。
ターゲットと背景の極端に不均衡のため、境界ボックスの回帰は赤外線小ターゲットに対して非常に敏感である。
本稿では,これらの問題に対処する機能学習ネットワーク(EFLNet)を提案する。
論文 参考訳(メタデータ) (2023-07-27T09:23:22Z) - Infrared Small-Dim Target Detection with Transformer under Complex
Backgrounds [155.388487263872]
変換器を用いた赤外線小径目標検出手法を提案する。
画像特徴の相互作用情報をより広い範囲で学習するために,変換器の自己認識機構を採用する。
最小限のターゲットの機能を学習するための機能拡張モジュールも設計しています。
論文 参考訳(メタデータ) (2021-09-29T12:23:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。