論文の概要: Understanding Egocentric Hand-Object Interactions from Hand Pose
Estimation
- arxiv url: http://arxiv.org/abs/2109.14657v1
- Date: Wed, 29 Sep 2021 18:34:06 GMT
- ステータス: 処理完了
- システム内更新日: 2021-10-01 14:43:14.008427
- Title: Understanding Egocentric Hand-Object Interactions from Hand Pose
Estimation
- Title(参考訳): ハンドポーズ推定による自我中心の物体相互作用の理解
- Authors: Yao Lu and Walterio W. Mayol-Cuevas
- Abstract要約: 本稿では,エゴセントリックな画像を含むデータセットをペアワイズにラベル付けする手法を提案する。
また、収集したペアワイズデータを用いて、効率的なエンコーダ-デコーダスタイルのネットワークをトレーニングします。
- 参考スコア(独自算出の注目度): 24.68535915849555
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In this paper, we address the problem of estimating the hand pose from the
egocentric view when the hand is interacting with objects. Specifically, we
propose a method to label a dataset Ego-Siam which contains the egocentric
images pair-wisely. We also use the collected pairwise data to train our
encoder-decoder style network which has been proven efficient in. This could
bring extra training efficiency and testing accuracy. Our network is
lightweight and can be performed with over 30 FPS with an outdated GPU. We
demonstrate that our method outperforms Mueller et al. which is the state of
the art work dealing with egocentric hand-object interaction problems on the
GANerated dataset. To show the ability to preserve the semantic information of
our method, we also report the performance of grasp type classification on
GUN-71 dataset and outperforms the benchmark by only using the predicted 3-d
hand pose.
- Abstract(参考訳): 本稿では,手が物体と相互作用しているとき,自己中心的視点から手の位置を推定する問題に対処する。
具体的には,エゴセントリック画像を含むデータセット ego-siam を対方向にラベル付けする手法を提案する。
また、収集したペアワイズデータを使って、効率的なエンコーダ-デコーダスタイルのネットワークをトレーニングしています。
これにより、トレーニング効率とテスト精度が向上する可能性がある。
私たちのネットワークは軽量で、古いgpuを使って30fps以上で実行できます。
GANerated データセット上でのエゴセントリックな手-物間相互作用問題を扱うアートワークの状況である Mueller らより優れていることを示す。
本手法の意味情報を保存する能力を示すために,gun-71データセットにおける把持型分類の性能を報告し,予測した3次元ハンドポーズのみを用いてベンチマークを上回った。
関連論文リスト
- Learning Precise Affordances from Egocentric Videos for Robotic Manipulation [18.438782733579064]
Affordanceは、オブジェクトが提供する潜在的なアクションとして定義され、ロボット操作タスクに不可欠である。
本稿では,データ収集,効果的なモデルトレーニング,ロボットの展開を含む,合理化された空き時間学習システムを提案する。
論文 参考訳(メタデータ) (2024-08-19T16:11:47Z) - In My Perspective, In My Hands: Accurate Egocentric 2D Hand Pose and Action Recognition [1.4732811715354455]
アクション認識は、エゴセントリックなビデオ理解に不可欠であり、ユーザの努力なしに日々の生活活動(ADL)の自動的かつ継続的なモニタリングを可能にする。
既存の文献では、計算集約的な深度推定ネットワークを必要とする3Dハンドポーズ入力や、不快な深度センサーを装着することに焦点を当てている。
EffHandEgoNetとEffHandEgoNetの2つの新しい手法を導入する。
論文 参考訳(メタデータ) (2024-04-14T17:33:33Z) - Benchmarks and Challenges in Pose Estimation for Egocentric Hand Interactions with Objects [89.95728475983263]
ロボティクス、AR/VR、アクション認識、モーション生成といったタスクにおいて、自己中心的な視点からこのようなインタラクションを理解することが重要である。
我々は、AmblyHandsとARCTICデータセットに基づいたHANDS23チャレンジを、慎重に設計されたトレーニングとテストの分割に基づいて設計する。
提案手法の結果と近年のリーダーボードのベースラインに基づいて,3Dハンド(オブジェクト)再構成タスクの徹底的な解析を行う。
論文 参考訳(メタデータ) (2024-03-25T05:12:21Z) - AssemblyHands: Towards Egocentric Activity Understanding via 3D Hand
Pose Estimation [26.261767086366866]
正確な3Dハンドポーズアノテーションを備えた大規模ベンチマークデータセットである AssemblyHands を提示する。
AssemblyHandsは490Kのエゴセントリックなイメージを含む3.0Mの注釈付きイメージを提供する。
我々の研究は、高品質の手のポーズが、行動を認識する能力を直接的に改善することを示しています。
論文 参考訳(メタデータ) (2023-04-24T17:52:57Z) - Interacting Hand-Object Pose Estimation via Dense Mutual Attention [97.26400229871888]
3Dハンドオブジェクトのポーズ推定は多くのコンピュータビジョンアプリケーションの成功の鍵となる。
本研究では,手と物体間の微粒な依存関係をモデル化できる新しい相互注意機構を提案する。
提案手法は,高品質かつリアルタイムな推論速度で,物理的に妥当なポーズを生成できる。
論文 参考訳(メタデータ) (2022-11-16T10:01:33Z) - S$^2$Contact: Graph-based Network for 3D Hand-Object Contact Estimation
with Semi-Supervised Learning [70.72037296392642]
モノクロ画像から接触を学習できる新しい半教師付きフレームワークを提案する。
具体的には、大規模データセットにおける視覚的および幾何学的整合性制約を利用して擬似ラベルを生成する。
より正確な再構築を行うために手動インタラクションを規定するコンタクトマップを使用することの利点を示す。
論文 参考訳(メタデータ) (2022-08-01T14:05:23Z) - What's in your hands? 3D Reconstruction of Generic Objects in Hands [49.12461675219253]
我々の研究は、単一のRGB画像からハンドヘルドオブジェクトを再構築することを目的としている。
通常、既知の3Dテンプレートを仮定し、問題を3Dポーズ推定に還元する以前の作業とは対照的に、我々の作業は3Dテンプレートを知らずに汎用的なハンドヘルドオブジェクトを再構成する。
論文 参考訳(メタデータ) (2022-04-14T17:59:02Z) - Estimating Egocentric 3D Human Pose in the Wild with External Weak
Supervision [72.36132924512299]
本稿では,大規模な自己中心型データセットでトレーニング可能な,新たな自己中心型ポーズ推定手法を提案する。
本研究では,事前学習された外部視点のポーズ推定モデルにより抽出された高品質な特徴を用いて,エゴセントリックな特徴を監督する新しい学習戦略を提案する。
実験により,本手法は,1つの画像から正確な3Dポーズを予測し,定量的,定性的に,最先端の手法よりも優れていることがわかった。
論文 参考訳(メタデータ) (2022-01-20T00:45:13Z) - H2O: Two Hands Manipulating Objects for First Person Interaction
Recognition [70.46638409156772]
両手操作対象のマーカーレス3Dアノテーションを用いて,エゴセントリックな対話認識のための包括的なフレームワークを提案する。
本手法は,2つの手の3次元ポーズと操作対象の6次元ポーズのアノテーションと,それぞれのフレームのインタラクションラベルを生成する。
我々のデータセットは、H2O (2 Hands and Objects)と呼ばれ、同期されたマルチビューRGB-D画像、対話ラベル、オブジェクトクラス、左右の手でのグラウンドトルース3Dポーズ、6Dオブジェクトポーズ、グラウンドトルースカメラポーズ、オブジェクトメッシュ、シーンポイントクラウドを提供する。
論文 参考訳(メタデータ) (2021-04-22T17:10:42Z) - MVHM: A Large-Scale Multi-View Hand Mesh Benchmark for Accurate 3D Hand
Pose Estimation [32.12879364117658]
1枚のRGB画像から3Dハンドポーズを推定することは困難である。
我々は、任意のターゲットメッシュ基底真理に一致する剛性メッシュモデルを可能にするスピンマッチングアルゴリズムを設計する。
提案手法は,提案するデータセットを用いて手ポーズ推定器の訓練が性能を大幅に向上させることを示す。
論文 参考訳(メタデータ) (2020-12-06T07:55:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。