論文の概要: Boost-RS: Boosted Embeddings for Recommender Systems and its Application
to Enzyme-Substrate Interaction Prediction
- arxiv url: http://arxiv.org/abs/2109.14766v1
- Date: Tue, 28 Sep 2021 19:21:28 GMT
- ステータス: 処理完了
- システム内更新日: 2021-10-02 11:05:17.436387
- Title: Boost-RS: Boosted Embeddings for Recommender Systems and its Application
to Enzyme-Substrate Interaction Prediction
- Title(参考訳): Boost-RS: Recommender システムのための強化埋め込みと酵素-基質相互作用予測への応用
- Authors: Xinmeng Li, Li-ping Liu, Soha Hassoun
- Abstract要約: Boost-RSは一般的なRSフレームワークであり、補助データを通じてベクトルを"ブースティング"することでRSのパフォーマンスを向上させる。
本稿では,各補助課題が組込みベクトルの学習を促進すること,およびBoost-RSによるコントラスト学習が結合性および多ラベル学習に優れていることを示す。
- 参考スコア(独自算出の注目度): 5.8708720017800475
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Despite experimental and curation efforts, the extent of enzyme promiscuity
on substrates continues to be largely unexplored and under documented.
Recommender systems (RS), which are currently unexplored for the
enzyme-substrate interaction prediction problem, can be utilized to provide
enzyme recommendations for substrates, and vice versa. The performance of
Collaborative-Filtering (CF) recommender systems however hinges on the quality
of embedding vectors of users and items (enzymes and substrates in our case).
Importantly, enhancing CF embeddings with heterogeneous auxiliary data,
specially relational data (e.g., hierarchical, pairwise, or groupings), remains
a challenge. We propose an innovative general RS framework, termed Boost-RS,
that enhances RS performance by "boosting" embedding vectors through auxiliary
data. Specifically, Boost-RS is trained and dynamically tuned on multiple
relevant auxiliary learning tasks Boost-RS utilizes contrastive learning tasks
to exploit relational data. To show the efficacy of Boost-RS for the
enzyme-substrate prediction interaction problem, we apply the Boost-RS
framework to several baseline CF models. We show that each of our auxiliary
tasks boosts learning of the embedding vectors, and that contrastive learning
using Boost-RS outperforms attribute concatenation and multi-label learning. We
also show that Boost-RS outperforms similarity-based models. Ablation studies
and visualization of learned representations highlight the importance of using
contrastive learning on some of the auxiliary data in boosting the embedding
vectors.
- Abstract(参考訳): 実験とキュレーションの努力にもかかわらず、基質の酵素散布の程度は未調査のままであり、文書化されている。
現在、酵素-基質相互作用予測問題のために探索されていないRecommender System(RS)は、基質の酵素レコメンデーションを提供するために利用することができる。
しかし、CF(Collaborative-Filtering)の性能は、ユーザやアイテム(酵素や基質)の埋め込みベクトルの品質に依存している。
重要な点は、cf埋め込みをヘテロジニアスな補助データ、特にリレーショナルデータ(階層データ、ペアワイズデータ、グループ化など)で強化することである。
本稿では,補助データによる埋め込みベクトルの「ブースティング」により,RS性能を向上させる革新的な汎用RSフレームワークBoost-RSを提案する。
具体的には、Boost-RSは複数の関連する補助学習タスクに基づいてトレーニングされ、動的に調整される。
酵素と基質の相互作用問題に対するBoost-RSの有効性を示すために,Boost-RSフレームワークをいくつかのベースラインCFモデルに適用する。
本稿では,各補助課題が組込みベクトルの学習を促進すること,およびBoost-RSによるコントラスト学習が結合性および多ラベル学習に優れていることを示す。
また、Boost-RSは類似性に基づくモデルよりも優れていることを示す。
アブレーション研究と学習表現の可視化は、埋め込みベクトルを増加させる補助データにコントラスト学習を使うことの重要性を強調している。
関連論文リスト
- Enriching Tabular Data with Contextual LLM Embeddings: A Comprehensive Ablation Study for Ensemble Classifiers [20.46918103875102]
本研究では,大規模言語モデルの埋め込みから派生した特徴を持つデータセットを豊かにするための体系的アプローチを提案する。
我々はRoBERTaとGPT-2の埋め込みがランダムフォレスト、XGBoost、CatBoostなどのアンサンブル分類器に与える影響を評価する。
その結果,埋め込みと従来の数値的特徴とカテゴリー的特徴を統合することで,予測性能が向上することが示唆された。
論文 参考訳(メタデータ) (2024-11-03T17:45:00Z) - A Thorough Performance Benchmarking on Lightweight Embedding-based Recommender Systems [67.52782366565658]
State-of-the-art recommender system (RS) は、埋め込みベクトルによって符号化される分類的特徴に依存し、結果として非常に大きな埋め込みテーブルとなる。
軽量埋め込み型RSの繁栄にもかかわらず、評価プロトコルには幅広い多様性が見られる。
本研究では, LERSの性能, 効率, クロスタスク転送性について, 徹底的なベンチマークによる検討を行った。
論文 参考訳(メタデータ) (2024-06-25T07:45:00Z) - GraphLearner: Graph Node Clustering with Fully Learnable Augmentation [76.63963385662426]
Contrastive Deep Graph Clustering (CDGC)は、異なるクラスタにノードをグループ化するために、コントラスト学習のパワーを活用する。
我々は、GraphLearnerと呼ばれる、完全学習可能な拡張を備えたグラフノードクラスタリングを提案する。
学習可能な拡張器を導入し、CDGCのための高品質でタスク固有の拡張サンプルを生成する。
論文 参考訳(メタデータ) (2022-12-07T10:19:39Z) - Kronecker Decomposition for Knowledge Graph Embeddings [5.49810117202384]
知識グラフ埋め込みモデルにおけるパラメータ数を削減するために,Kronecker分解に基づく手法を提案する。
この分解により、3つの埋め込みベクトル間の要素的相互作用が各埋め込みベクトル内の相互作用によって拡張されることが保証される。
実験により,Kronecker分解を埋め込み行列に適用すると,全てのベンチマークデータセットのパラメータ効率が向上することが示唆された。
論文 参考訳(メタデータ) (2022-05-13T11:11:03Z) - CCLF: A Contrastive-Curiosity-Driven Learning Framework for
Sample-Efficient Reinforcement Learning [56.20123080771364]
我々は、強化学習のためのモデルに依存しないコントラスト駆動学習フレームワーク(CCLF)を開発した。
CCLFは、サンプルの重要性を完全に活用し、自己管理的な学習効率を向上させる。
このアプローチをDeepMind Control Suite、Atari、MiniGridベンチマークで評価する。
論文 参考訳(メタデータ) (2022-05-02T14:42:05Z) - SURF: Semi-supervised Reward Learning with Data Augmentation for
Feedback-efficient Preference-based Reinforcement Learning [168.89470249446023]
我々は、大量のラベルなしサンプルとデータ拡張を利用する半教師付き報酬学習フレームワークSURFを提案する。
報奨学習にラベルのないサンプルを活用するために,選好予測器の信頼性に基づいてラベルのないサンプルの擬似ラベルを推定する。
本実験は, ロボット操作作業における嗜好に基づく手法のフィードバック効率を有意に向上させることを実証した。
論文 参考訳(メタデータ) (2022-03-18T16:50:38Z) - SAIS: Supervising and Augmenting Intermediate Steps for Document-Level
Relation Extraction [51.27558374091491]
本稿では,関係抽出のための中間ステップ(SAIS)を監督し,拡張することにより,関連コンテキストやエンティティタイプをキャプチャするモデルを明示的に教えることを提案する。
そこで本提案手法は,より効果的な管理を行うため,より優れた品質の関係を抽出するだけでなく,それに対応する証拠をより正確に抽出する。
論文 参考訳(メタデータ) (2021-09-24T17:37:35Z) - Adversarial Feature Augmentation and Normalization for Visual
Recognition [109.6834687220478]
最近のコンピュータビジョンの進歩は、分類モデルの一般化能力を改善するために、逆データ拡張を利用する。
本稿では,中間的特徴埋め込みにおける敵対的拡張を提唱する効率的かつ効率的な代替手法を提案する。
代表的なバックボーンネットワークを用いて,多様な視覚認識タスクにまたがる提案手法を検証する。
論文 参考訳(メタデータ) (2021-03-22T20:36:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。