論文の概要: A Thorough Performance Benchmarking on Lightweight Embedding-based Recommender Systems
- arxiv url: http://arxiv.org/abs/2406.17335v2
- Date: Thu, 21 Nov 2024 05:42:02 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-22 15:16:28.733546
- Title: A Thorough Performance Benchmarking on Lightweight Embedding-based Recommender Systems
- Title(参考訳): 軽量埋め込み型レコメンダシステムにおける詳細な性能ベンチマーク
- Authors: Hung Vinh Tran, Tong Chen, Quoc Viet Hung Nguyen, Zi Huang, Lizhen Cui, Hongzhi Yin,
- Abstract要約: State-of-the-art recommender system (RS) は、埋め込みベクトルによって符号化される分類的特徴に依存し、結果として非常に大きな埋め込みテーブルとなる。
軽量埋め込み型RSの繁栄にもかかわらず、評価プロトコルには幅広い多様性が見られる。
本研究では, LERSの性能, 効率, クロスタスク転送性について, 徹底的なベンチマークによる検討を行った。
- 参考スコア(独自算出の注目度): 67.52782366565658
- License:
- Abstract: Since the creation of the Web, recommender systems (RSs) have been an indispensable mechanism in information filtering. State-of-the-art RSs primarily depend on categorical features, which ecoded by embedding vectors, resulting in excessively large embedding tables. To prevent over-parameterized embedding tables from harming scalability, both academia and industry have seen increasing efforts in compressing RS embeddings. However, despite the prosperity of lightweight embedding-based RSs (LERSs), a wide diversity is seen in evaluation protocols, resulting in obstacles when relating LERS performance to real-world usability. Moreover, despite the common goal of lightweight embeddings, LERSs are evaluated with a single choice between the two main recommendation tasks -- collaborative filtering and content-based recommendation. This lack of discussions on cross-task transferability hinders the development of unified, more scalable solutions. Motivated by these issues, this study investigates various LERSs' performance, efficiency, and cross-task transferability via a thorough benchmarking process. Additionally, we propose an efficient embedding compression method using magnitude pruning, which is an easy-to-deploy yet highly competitive baseline that outperforms various complex LERSs. Our study reveals the distinct performance of LERSs across the two tasks, shedding light on their effectiveness and generalizability. To support edge-based recommendations, we tested all LERSs on a Raspberry Pi 4, where the efficiency bottleneck is exposed. Finally, we conclude this paper with critical summaries of LERS performance, model selection suggestions, and underexplored challenges around LERSs for future research. To encourage future research, we publish source codes and artifacts at \href{this link}{https://github.com/chenxing1999/recsys-benchmark}.
- Abstract(参考訳): Web 作成以来,レコメンダシステム (RS) は情報フィルタリングにおいて必須のメカニズムとなっている。
State-of-the-art RSは、主に分類的特徴に依存し、埋め込みベクトルによって符号化され、結果として非常に大きな埋め込みテーブルとなる。
過度にパラメータ化された埋め込みテーブルがスケーラビリティを損なうのを防ぐために、学術と産業の両方がRS埋め込みの圧縮に力を入れている。
しかし、軽量埋め込み型RS(LERS)の繁栄にもかかわらず、評価プロトコルには幅広い多様性が見られ、LERSの性能と現実のユーザビリティとの関連性に障害が生じている。
さらに、軽量な埋め込みという共通の目標にもかかわらず、LERSは2つの主要なレコメンデーションタスク – 協調フィルタリングとコンテンツベースのレコメンデーション – の1つの選択で評価される。
クロスタスクトランスファービリティに関する議論の欠如は、統一的でスケーラブルなソリューションの開発を妨げる。
これらの課題に触発された本研究では, LERSの性能, 効率, クロスタスクの転送性について, 徹底的なベンチマークによる検討を行った。
さらに,様々な複雑なLERSよりも優れた,容易に展開できるが高い競争力を持つベースラインであるマグニチュードプルーニングを用いた効率的な埋め込み圧縮手法を提案する。
本研究は,2つのタスクにまたがるLERSの性能を明らかにし,その有効性と一般化性に光を当てた。
エッジベースのレコメンデーションをサポートするために、すべてのLERSをRaspberry Pi 4上でテストしました。
最後に, LERSの性能, モデル選択の提案, 今後の研究におけるLERSの課題について概説した。
今後の研究を促進するため、ソースコードとアーティファクトを \href{this link}{https://github.com/chenxing 1999/recsys-benchmark} で公開しています。
関連論文リスト
- CoPS: Empowering LLM Agents with Provable Cross-Task Experience Sharing [70.25689961697523]
クロスタスク体験の共有と選択によるシーケンシャル推論を強化する一般化可能なアルゴリズムを提案する。
我々の研究は、既存のシーケンシャルな推論パラダイムのギャップを埋め、タスク間体験の活用の有効性を検証する。
論文 参考訳(メタデータ) (2024-10-22T03:59:53Z) - Towards Scalable Semantic Representation for Recommendation [65.06144407288127]
大規模言語モデル(LLM)に基づく意味的IDを構築するために、Mixture-of-Codesを提案する。
提案手法は,識別性と寸法の堅牢性に優れたスケーラビリティを実現し,提案手法で最高のスケールアップ性能を実現する。
論文 参考訳(メタデータ) (2024-10-12T15:10:56Z) - Large Language Model Empowered Embedding Generator for Sequential Recommendation [57.49045064294086]
大言語モデル(LLM)は、その人気に関係なく、項目間の意味的関係を理解する能力を持つ。
LLMEmbは、LCMを利用してアイテム埋め込みを作成し、シークエンシャル・レコメンダ・システムの性能を高める革新的な技術である。
論文 参考訳(メタデータ) (2024-09-30T03:59:06Z) - PEAR: Position-Embedding-Agnostic Attention Re-weighting Enhances Retrieval-Augmented Generation with Zero Inference Overhead [24.611413814466978]
検索拡張生成(RAG)により強化された大言語モデル(LLM)は、Web検索のための新しいパラダイムを導入した。
既存のコンテキスト認識を強化する方法は、しばしば非効率であり、推論中に時間やメモリオーバーヘッドが発生する。
そこで我々は,LLMの文脈認識をゼロ推論オーバーヘッドで向上する位置埋め込み非依存再重み付け(PEAR)を提案する。
論文 参考訳(メタデータ) (2024-09-29T15:40:54Z) - Efficient and Deployable Knowledge Infusion for Open-World Recommendations via Large Language Models [53.547190001324665]
大規模言語モデル(LLM)からユーザとアイテムに関する2種類の外部知識を取得するためのREKIを提案する。
個別の知識抽出と個別の知識抽出を,異なるシナリオのスケールに合わせて開発し,オフラインのリソース消費を効果的に削減する。
実験によると、REKIは最先端のベースラインより優れており、多くの推奨アルゴリズムやタスクと互換性がある。
論文 参考訳(メタデータ) (2024-08-20T03:45:24Z) - Efficient and Responsible Adaptation of Large Language Models for Robust Top-k Recommendations [11.004673022505566]
何百万というユーザの長いクエリは、大規模言語モデルのパフォーマンスを低下させ、推奨することができる。
本稿では,大規模言語モデルと従来のレコメンデーションシステムの両方の機能を利用するハイブリッドタスク割り当てフレームワークを提案する。
実世界の3つのデータセットによる結果から,弱い利用者の減少と,サブ人口に対するRSのロバスト性の向上が示唆された。
論文 参考訳(メタデータ) (2024-05-01T19:11:47Z) - Query Encoder Distillation via Embedding Alignment is a Strong Baseline
Method to Boost Dense Retriever Online Efficiency [4.254906060165999]
2層のBERTベースのクエリエンコーダであっても、BEIRベンチマークでは完全なDEパフォーマンスの92.5%を維持可能であることを示す。
私たちの発見が、メソッドの複雑さとパフォーマンスの改善の間のトレードオフを再評価することを、コミュニティに促すことを願っています。
論文 参考訳(メタデータ) (2023-06-05T06:53:55Z) - Choosing the Best of Both Worlds: Diverse and Novel Recommendations
through Multi-Objective Reinforcement Learning [68.45370492516531]
本稿では,Recommender Systems (RS) 設定のための拡張多目的強化学習(SMORL)を紹介する。
SMORLエージェントは、標準レコメンデーションモデルを拡張し、RLレイヤーを追加し、3つの主要な目的(正確性、多様性、新しいレコメンデーション)を同時に満たすように強制する。
実世界の2つのデータセットに対する実験結果から,集約的多様性の顕著な増加,精度の適度な向上,レコメンデーションの反復性の低下,および相補的目的としての多様性と新規性の強化の重要性が示された。
論文 参考訳(メタデータ) (2021-10-28T13:22:45Z) - Optimal Resource Allocation for Serverless Queries [8.59568779761598]
以前の作業では、リソース割り当てと実行時の積極的なトレードオフを無視しながら、ピークアロケーションの予測に重点を置いていた。
本稿では,新しいクエリと過去のクエリの両方に対して,アグレッシブなトレードオフでパフォーマンスを予測できる最適なリソース割り当てシステムを提案する。
論文 参考訳(メタデータ) (2021-07-19T02:55:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。