論文の概要: An Automated Scanning Transmission Electron Microscope Guided by Sparse
Data Analytics
- arxiv url: http://arxiv.org/abs/2109.14772v1
- Date: Thu, 30 Sep 2021 00:25:35 GMT
- ステータス: 翻訳完了
- システム内更新日: 2021-10-01 14:38:42.638149
- Title: An Automated Scanning Transmission Electron Microscope Guided by Sparse
Data Analytics
- Title(参考訳): スパースデータ解析による走査型電子顕微鏡の自動化
- Authors: Matthew Olszta, Derek Hopkins, Kevin R. Fiedler, Marjolein Oostrom,
Sarah Akers, Steven R. Spurgeon
- Abstract要約: 本稿では,新たに出現するスパースデータ分析によって導かれる閉ループ管楽器制御プラットフォームの設計について論じる。
機械学習によって通知される集中型コントローラが、限られた$a$$priori$知識とタスクベースの識別を組み合わせることで、オンザフライでの実験的な意思決定を駆動する様子を実証する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Artificial intelligence (AI) promises to reshape scientific inquiry and
enable breakthrough discoveries in areas such as energy storage, quantum
computing, and biomedicine. Scanning transmission electron microscopy (STEM), a
cornerstone of the study of chemical and materials systems, stands to benefit
greatly from AI-driven automation. However, present barriers to low-level
instrument control, as well as generalizable and interpretable feature
detection, make truly automated microscopy impractical. Here, we discuss the
design of a closed-loop instrument control platform guided by emerging sparse
data analytics. We demonstrate how a centralized controller, informed by
machine learning combining limited $a$ $priori$ knowledge and task-based
discrimination, can drive on-the-fly experimental decision-making. This
platform unlocks practical, automated analysis of a variety of material
features, enabling new high-throughput and statistical studies.
- Abstract(参考訳): ai(artificial intelligence)は、科学調査を再構築し、エネルギー貯蔵、量子コンピューティング、バイオメディシンといった分野における画期的な発見を可能にすることを約束している。
化学・材料システム研究の基盤となる走査透過電子顕微鏡(STEM)は、AIによる自動化の恩恵を受けている。
しかし、低レベルの機器制御への障壁と、一般化し、解釈可能な特徴検出は、真に自動化された顕微鏡を実用的でないものにする。
本稿では,新しいsparseデータ分析によって導かれる閉ループ型インスツルメンテーション制御プラットフォームの設計について述べる。
機械学習によって学習される集中型コントローラが、知識とタスクベースの識別を制限して、オンザフライで実験的な意思決定を駆動する方法を実証する。
このプラットフォームは、様々な素材の特徴を実用的で自動で分析し、新しい高スループットおよび統計的研究を可能にする。
関連論文リスト
- Machine Learning - Driven Materials Discovery: Unlocking Next-Generation Functional Materials - A minireview [0.0]
機械学習(ML)によるアプローチは、材料発見、プロパティ予測、マテリアルデザインに革命をもたらしている。
このレビューでは、材料の機械的、熱的、電気的、光学的特性を予測するML駆動方式の現実的な応用を強調した。
最終的に、AI、自動実験、および計算モデリングの相乗効果は、材料の検出、最適化、設計の方法を変える。
論文 参考訳(メタデータ) (2025-03-22T15:24:38Z) - Learning and Controlling Silicon Dopant Transitions in Graphene using
Scanning Transmission Electron Microscopy [58.51812955462815]
単層炭素原子上のシリコン原子の遷移ダイナミクスを機械学習で決定する手法を提案する。
データサンプルは、ニューラルネットワークをトレーニングして遷移確率を予測するために、シンボリック表現を生成するために処理され、フィルタリングされる。
これらの学習された遷移ダイナミクスを利用すれば、格子全体に1つのシリコン原子を誘導し、あらかじめ決定された目標目的地へと導くことができる。
論文 参考訳(メタデータ) (2023-11-21T21:51:00Z) - Chemist-X: Large Language Model-empowered Agent for Reaction Condition Recommendation in Chemical Synthesis [55.30328162764292]
Chemist-Xは、化学合成における反応条件最適化(RCO)タスクを自動化する包括的なAIエージェントである。
このエージェントは、検索強化世代(RAG)技術とAI制御のウェットラブ実験を実行する。
我々の自動ウェットラブ実験の結果は、LLMが制御するエンドツーエンドの操作を、ロボットに人間がいない状態で行うことで達成され、Chemist-Xの自動運転実験における能力が証明された。
論文 参考訳(メタデータ) (2023-11-16T01:21:33Z) - Closing the loop: Autonomous experiments enabled by
machine-learning-based online data analysis in synchrotron beamline
environments [80.49514665620008]
機械学習は、大規模または高速に生成されたデータセットを含む研究を強化するために使用できる。
本研究では,X線反射法(XRR)のための閉ループワークフローへのMLの導入について述べる。
本研究では,ビームライン制御ソフトウェア環境に付加的なソフトウェア依存関係を導入することなく,実験中の基本データ解析をリアルタイムで行うソリューションを提案する。
論文 参考訳(メタデータ) (2023-06-20T21:21:19Z) - Machine Learning for Uncovering Biological Insights in Spatial
Transcriptomics Data [0.0]
マルチセルシステムの開発とホメオスタシスは、空間分子パターンの形成と維持に精巧な制御を必要とする。
空間転写学(ST)の進歩は、革新的な機械学習(ML)ツールの急速な開発につながっている。
MLが対応できる主要なST分析目標と現在の分析トレンドを要約する。
論文 参考訳(メタデータ) (2023-03-29T14:22:08Z) - Robotic Navigation Autonomy for Subretinal Injection via Intelligent
Real-Time Virtual iOCT Volume Slicing [88.99939660183881]
網膜下注射のための自律型ロボットナビゲーションの枠組みを提案する。
提案手法は,機器のポーズ推定方法,ロボットとi OCTシステム間のオンライン登録,およびインジェクションターゲットへのナビゲーションに適した軌道計画から構成される。
ブタ前眼の精度と再現性について実験を行った。
論文 参考訳(メタデータ) (2023-01-17T21:41:21Z) - Realizing Molecular Machine Learning through Communications for
Biological AI: Future Directions and Challenges [4.059849656394191]
分子機械学習(MML)に向けて、従来の装置よりもはるかに小さいスケールと媒体について検討する。
MMLの操作の基礎は、化学反応を通じて分子によって伝播される情報の輸送、処理、解釈である。
私たちは将来的な方向性と、この分野が解決できる課題に注目します。
論文 参考訳(メタデータ) (2022-12-22T17:53:25Z) - Ultrafast Focus Detection for Automated Microscopy [0.0]
連続的に収集した電子顕微鏡画像に対する高速な焦点検出アルゴリズムを提案する。
本手法は, 従来のコンピュータビジョン技術に適応し, 様々な微細な組織学的特徴を検出する手法である。
アウト・オブ・フォーカス条件をほぼリアルタイムに検出するテストが実施されている。
論文 参考訳(メタデータ) (2021-08-26T22:24:41Z) - Automated and Autonomous Experiment in Electron and Scanning Probe
Microscopy [0.0]
連続画像形成機構を有するイメージング手法における自動実験(AE)への主要な経路の解析を目指しています。
自動実験は一般分野の知識のより広い文脈で議論されるべきであり、実験の結果、双方が実験を通知し、増大させる。
論文 参考訳(メタデータ) (2021-03-22T20:24:41Z) - Towards an Automatic Analysis of CHO-K1 Suspension Growth in
Microfluidic Single-cell Cultivation [63.94623495501023]
我々は、人間の力で抽象化されたニューラルネットワークをデータレベルで注入できる新しい機械学習アーキテクチャを提案する。
具体的には、自然データと合成データに基づいて生成モデルを同時に訓練し、細胞数などの対象変数を確実に推定できる共有表現を学習する。
論文 参考訳(メタデータ) (2020-10-20T08:36:51Z) - Integrated Benchmarking and Design for Reproducible and Accessible
Evaluation of Robotic Agents [61.36681529571202]
本稿では,開発とベンチマークを統合した再現性ロボット研究の新しい概念について述べる。
このセットアップの中心的なコンポーネントの1つはDuckietown Autolabであり、これは比較的低コストで再現可能な標準化されたセットアップである。
本研究では,インフラを用いて実施した実験の再現性を解析し,ロボットのハードウェアや遠隔実験室間でのばらつきが低いことを示す。
論文 参考訳(メタデータ) (2020-09-09T15:31:29Z) - Machine Learning in Nano-Scale Biomedical Engineering [77.75587007080894]
ナノスケールバイオメディカルエンジニアリングにおける機械学習の利用に関する既存の研究について概説する。
ML問題として定式化できる主な課題は、3つの主要なカテゴリに分類される。
提示された方法論のそれぞれについて、その原則、応用、制限に特に重点を置いている。
論文 参考訳(メタデータ) (2020-08-05T15:45:54Z) - Autonomous discovery in the chemical sciences part II: Outlook [2.566673015346446]
この2部構成のレビューは、自動化が化学科学における発見のさまざまな側面にどのように貢献したかを検証している。
科学プロセスにおいて、自動化と計算の役割が何であるかを明確にすることがますます重要である。
論文 参考訳(メタデータ) (2020-03-30T19:11:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。