論文の概要: Machine Learning for Uncovering Biological Insights in Spatial
Transcriptomics Data
- arxiv url: http://arxiv.org/abs/2303.16725v1
- Date: Wed, 29 Mar 2023 14:22:08 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-30 14:31:09.043399
- Title: Machine Learning for Uncovering Biological Insights in Spatial
Transcriptomics Data
- Title(参考訳): 空間トランスクリプトミクスデータから生物学的洞察を明らかにするための機械学習
- Authors: Alex J. Lee, Robert Cahill, Reza Abbasi-Asl
- Abstract要約: マルチセルシステムの開発とホメオスタシスは、空間分子パターンの形成と維持に精巧な制御を必要とする。
空間転写学(ST)の進歩は、革新的な機械学習(ML)ツールの急速な開発につながっている。
MLが対応できる主要なST分析目標と現在の分析トレンドを要約する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Development and homeostasis in multicellular systems both require exquisite
control over spatial molecular pattern formation and maintenance. Advances in
spatially-resolved and high-throughput molecular imaging methods such as
multiplexed immunofluorescence and spatial transcriptomics (ST) provide
exciting new opportunities to augment our fundamental understanding of these
processes in health and disease. The large and complex datasets resulting from
these techniques, particularly ST, have led to rapid development of innovative
machine learning (ML) tools primarily based on deep learning techniques. These
ML tools are now increasingly featured in integrated experimental and
computational workflows to disentangle signals from noise in complex biological
systems. However, it can be difficult to understand and balance the different
implicit assumptions and methodologies of a rapidly expanding toolbox of
analytical tools in ST. To address this, we summarize major ST analysis goals
that ML can help address and current analysis trends. We also describe four
major data science concepts and related heuristics that can help guide
practitioners in their choices of the right tools for the right biological
questions.
- Abstract(参考訳): マルチセルシステムの開発とホメオスタシスはどちらも空間的分子パターンの形成と維持に精巧な制御を必要とする。
マルチプレックス免疫蛍光法や空間転写学(st)などの空間分解・高スループット分子イメージング法の進歩は、健康や疾患におけるこれらのプロセスの基本的な理解を強化するエキサイティングな新しい機会を提供する。
これらの技術、特にSTから得られた大規模で複雑なデータセットは、主にディープラーニング技術に基づく革新的な機械学習(ML)ツールの急速な開発に繋がった。
これらのmlツールは、複雑な生体システムにおけるノイズから信号を引き離すための実験と計算の統合ワークフローにますます注目されている。
しかし、stで急速に拡大する分析ツールのツールボックスの異なる暗黙の仮定と方法論を理解しバランスをとることは困難であり、これに対処するために、mlが現在の分析トレンドに対処するのに役立つ主要なst分析目標をまとめる。
また,4つの主要なデータサイエンス概念と関連するヒューリスティックについて述べることで,適切な生物学的質問に対する適切なツールの選択を実践者に指導することができる。
関連論文リスト
- Explainable AI Methods for Multi-Omics Analysis: A Survey [3.885941688264509]
マルチオミクス(multi-omics)とは、複数の「オム」から派生したデータの積分解析である。
深層学習の手法は、マルチオミクスデータの統合や、分子間相互作用の洞察、複雑な疾患の研究の強化にますます活用されている。
これらのモデルは、多くの相互接続層と非線形関係を持ち、しばしばブラックボックスとして機能し、意思決定プロセスにおける透明性を欠いている。
このレビューでは、マルチオミクス研究において、xAIが深層学習モデルの解釈可能性を改善する方法について検討し、臨床医に明確な洞察を与える可能性を強調した。
論文 参考訳(メタデータ) (2024-10-15T05:01:17Z) - Large Language Models in Drug Discovery and Development: From Disease Mechanisms to Clinical Trials [49.19897427783105]
大規模言語モデル(LLM)の創薬・開発分野への統合は、重要なパラダイムシフトである。
これらの先進的な計算モデルが、ターゲット・ディスリーズ・リンクを明らかにし、複雑なバイオメディカルデータを解釈し、薬物分子設計を強化し、薬物の有効性と安全性を予測し、臨床治験プロセスを促進する方法について検討する。
論文 参考訳(メタデータ) (2024-09-06T02:03:38Z) - Multimodal Large Language Models for Bioimage Analysis [39.120941702559726]
MLLM(Multimodal Large Language Models)は、理解、分析、推論、一般化など、創発的な能力を示す。
これらの能力により、MLLMは生物学的画像や様々なモダリティによって得られたデータから複雑な情報を抽出することを約束する。
MLLMの開発は、生物学研究における人間の研究者を増強するためのインテリジェントアシスタントやエージェントとしての役割において、公約が増していることを示している。
論文 参考訳(メタデータ) (2024-07-29T08:21:25Z) - ProBio: A Protocol-guided Multimodal Dataset for Molecular Biology Lab [67.24684071577211]
研究結果を複製するという課題は、分子生物学の分野に重大な障害をもたらしている。
まず、この目的に向けた最初のステップとして、ProBioという名前の包括的なマルチモーダルデータセットをキュレートする。
次に、透明なソリューショントラッキングとマルチモーダルなアクション認識という2つの挑戦的なベンチマークを考案し、BioLab設定におけるアクティビティ理解に関連する特徴と難しさを強調した。
論文 参考訳(メタデータ) (2023-11-01T14:44:01Z) - Causal machine learning for single-cell genomics [94.28105176231739]
単細胞ゲノミクスへの機械学習技術の応用とその課題について論じる。
まず, 単一細胞生物学における現在の因果的アプローチの基盤となるモデルについて述べる。
次に、単一セルデータへの因果的アプローチの適用におけるオープンな問題を特定する。
論文 参考訳(メタデータ) (2023-10-23T13:35:24Z) - Machine learning in bioprocess development: From promise to practice [58.720142291102135]
機械学習(ML)アプローチのようなデータ駆動の手法は、大きな設計空間を合理的に探索する可能性が高い。
本研究の目的は,これまでのバイオプロセス開発におけるML手法の適用例を示すことである。
論文 参考訳(メタデータ) (2022-10-04T13:48:59Z) - Application of Machine Learning in understanding plant virus
pathogenesis: Trends and perspectives on emergence, diagnosis, host-virus
interplay and management [1.949912057689623]
深層学習アルゴリズムは、植物ウイルス学を含むいくつかの分野の生物学における機械学習の適用をさらに促進する。
植物ウイルス学の理解における機械学習の適用の著しい進歩を考えると、このレビューは機械学習に関する序文を強調している。
論文 参考訳(メタデータ) (2021-12-03T16:25:26Z) - An Automated Scanning Transmission Electron Microscope Guided by Sparse
Data Analytics [0.0]
本稿では,新たに出現するスパースデータ分析によって導かれる閉ループ管楽器制御プラットフォームの設計について論じる。
機械学習によって通知される集中型コントローラが、限られた$a$$priori$知識とタスクベースの識別を組み合わせることで、オンザフライでの実験的な意思決定を駆動する様子を実証する。
論文 参考訳(メタデータ) (2021-09-30T00:25:35Z) - Towards an Automatic Analysis of CHO-K1 Suspension Growth in
Microfluidic Single-cell Cultivation [63.94623495501023]
我々は、人間の力で抽象化されたニューラルネットワークをデータレベルで注入できる新しい機械学習アーキテクチャを提案する。
具体的には、自然データと合成データに基づいて生成モデルを同時に訓練し、細胞数などの対象変数を確実に推定できる共有表現を学習する。
論文 参考訳(メタデータ) (2020-10-20T08:36:51Z) - Machine Learning in Nano-Scale Biomedical Engineering [77.75587007080894]
ナノスケールバイオメディカルエンジニアリングにおける機械学習の利用に関する既存の研究について概説する。
ML問題として定式化できる主な課題は、3つの主要なカテゴリに分類される。
提示された方法論のそれぞれについて、その原則、応用、制限に特に重点を置いている。
論文 参考訳(メタデータ) (2020-08-05T15:45:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。