End-to-End Image Compression with Probabilistic Decoding
- URL: http://arxiv.org/abs/2109.14837v1
- Date: Thu, 30 Sep 2021 04:07:09 GMT
- Title: End-to-End Image Compression with Probabilistic Decoding
- Authors: Haichuan Ma, Dong Liu, Cunhui Dong, Li Li and Feng Wu
- Abstract summary: We propose a learned image compression framework to support probabilistic decoding.
The proposed framework is dependent on a revertible neural network-based transform to convert pixels into coefficients.
- Score: 31.38636002751645
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Lossy image compression is a many-to-one process, thus one bitstream
corresponds to multiple possible original images, especially at low bit rates.
However, this nature was seldom considered in previous studies on image
compression, which usually chose one possible image as reconstruction, e.g. the
one with the maximal a posteriori probability. We propose a learned image
compression framework to natively support probabilistic decoding. The
compressed bitstream is decoded into a series of parameters that instantiate a
pre-chosen distribution; then the distribution is used by the decoder to sample
and reconstruct images. The decoder may adopt different sampling strategies and
produce diverse reconstructions, among which some have higher signal fidelity
and some others have better visual quality. The proposed framework is dependent
on a revertible neural network-based transform to convert pixels into
coefficients that obey the pre-chosen distribution as much as possible. Our
code and models will be made publicly available.
Related papers
- Exploiting Inter-Image Similarity Prior for Low-Bitrate Remote Sensing Image Compression [10.427300958330816]
We propose a codebook-based RS image compression (Code-RSIC) method with a generated discrete codebook.
The code significantly outperforms state-of-the-art traditional and learning-based image compression algorithms in terms of perception quality.
arXiv Detail & Related papers (2024-07-17T03:33:16Z) - Extreme Image Compression using Fine-tuned VQGANs [43.43014096929809]
We introduce vector quantization (VQ)-based generative models into the image compression domain.
The codebook learned by the VQGAN model yields a strong expressive capacity.
The proposed framework outperforms state-of-the-art codecs in terms of perceptual quality-oriented metrics.
arXiv Detail & Related papers (2023-07-17T06:14:19Z) - Multiscale Augmented Normalizing Flows for Image Compression [17.441496966834933]
We present a novel concept, which adapts the hierarchical latent space for augmented normalizing flows, an invertible latent variable model.
Our best performing model achieved average rate savings of more than 7% over comparable single-scale models.
arXiv Detail & Related papers (2023-05-09T13:42:43Z) - Estimating the Resize Parameter in End-to-end Learned Image Compression [50.20567320015102]
We describe a search-free resizing framework that can further improve the rate-distortion tradeoff of recent learned image compression models.
Our results show that our new resizing parameter estimation framework can provide Bjontegaard-Delta rate (BD-rate) improvement of about 10% against leading perceptual quality engines.
arXiv Detail & Related papers (2022-04-26T01:35:02Z) - Implicit Neural Representations for Image Compression [103.78615661013623]
Implicit Neural Representations (INRs) have gained attention as a novel and effective representation for various data types.
We propose the first comprehensive compression pipeline based on INRs including quantization, quantization-aware retraining and entropy coding.
We find that our approach to source compression with INRs vastly outperforms similar prior work.
arXiv Detail & Related papers (2021-12-08T13:02:53Z) - Learning Scalable $\ell_\infty$-constrained Near-lossless Image
Compression via Joint Lossy Image and Residual Compression [118.89112502350177]
We propose a novel framework for learning $ell_infty$-constrained near-lossless image compression.
We derive the probability model of the quantized residual by quantizing the learned probability model of the original residual.
arXiv Detail & Related papers (2021-03-31T11:53:36Z) - How to Exploit the Transferability of Learned Image Compression to
Conventional Codecs [25.622863999901874]
We show how learned image coding can be used as a surrogate to optimize an image for encoding.
Our approach can remodel a conventional image to adjust for the MS-SSIM distortion with over 20% rate improvement without any decoding overhead.
arXiv Detail & Related papers (2020-12-03T12:34:51Z) - Lossy Image Compression with Normalizing Flows [19.817005399746467]
State-of-the-art solutions for deep image compression typically employ autoencoders which map the input to a lower dimensional latent space.
In contrast, traditional approaches in image compression allow for a larger range of quality levels.
arXiv Detail & Related papers (2020-08-24T14:46:23Z) - Modeling Lost Information in Lossy Image Compression [72.69327382643549]
Lossy image compression is one of the most commonly used operators for digital images.
We propose a novel invertible framework called Invertible Lossy Compression (ILC) to largely mitigate the information loss problem.
arXiv Detail & Related papers (2020-06-22T04:04:56Z) - Learning Better Lossless Compression Using Lossy Compression [100.50156325096611]
We leverage the powerful lossy image compression algorithm BPG to build a lossless image compression system.
We model the distribution of the residual with a convolutional neural network-based probabilistic model that is conditioned on the BPG reconstruction.
Finally, the image is stored using the concatenation of the bitstreams produced by BPG and the learned residual coder.
arXiv Detail & Related papers (2020-03-23T11:21:52Z) - Discernible Image Compression [124.08063151879173]
This paper aims to produce compressed images by pursuing both appearance and perceptual consistency.
Based on the encoder-decoder framework, we propose using a pre-trained CNN to extract features of the original and compressed images.
Experiments on benchmarks demonstrate that images compressed by using the proposed method can also be well recognized by subsequent visual recognition and detection models.
arXiv Detail & Related papers (2020-02-17T07:35:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.