Exploiting Inter-Image Similarity Prior for Low-Bitrate Remote Sensing Image Compression
- URL: http://arxiv.org/abs/2407.12295v1
- Date: Wed, 17 Jul 2024 03:33:16 GMT
- Title: Exploiting Inter-Image Similarity Prior for Low-Bitrate Remote Sensing Image Compression
- Authors: Junhui Li, Xingsong Hou,
- Abstract summary: We propose a codebook-based RS image compression (Code-RSIC) method with a generated discrete codebook.
The code significantly outperforms state-of-the-art traditional and learning-based image compression algorithms in terms of perception quality.
- Score: 10.427300958330816
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learning-based methods have garnered significant attention in remote sensing (RS) image compression due to their superior performance. Most of these methods focus on enhancing the coding capability of the compression network and improving entropy model prediction accuracy. However, they typically compress and decompress each image independently, ignoring the significant inter-image similarity prior. In this paper, we propose a codebook-based RS image compression (Code-RSIC) method with a generated discrete codebook, which is deployed at the decoding end of a compression algorithm to provide inter-image similarity prior. Specifically, we first pretrain a high-quality discrete codebook using the competitive generation model VQGAN. We then introduce a Transformer-based prediction model to align the latent features of the decoded images from an existing compression algorithm with the frozen high-quality codebook. Finally, we develop a hierarchical prior integration network (HPIN), which mainly consists of Transformer blocks and multi-head cross-attention modules (MCMs) that can query hierarchical prior from the codebook, thus enhancing the ability of the proposed method to decode texture-rich RS images. Extensive experimental results demonstrate that the proposed Code-RSIC significantly outperforms state-of-the-art traditional and learning-based image compression algorithms in terms of perception quality. The code will be available at \url{https://github.com/mlkk518/Code-RSIC/
Related papers
- Exploring Distortion Prior with Latent Diffusion Models for Remote Sensing Image Compression [9.742764207747697]
We propose a latent diffusion model-based remote sensing image compression (LDM-RSIC) method.
In the first stage, a self-encoder learns prior from the high-quality input image.
In the second stage, the prior is generated through an LDM conditioned on the decoded image of an existing learning-based image compression algorithm.
arXiv Detail & Related papers (2024-06-06T11:13:44Z) - UniCompress: Enhancing Multi-Data Medical Image Compression with Knowledge Distillation [59.3877309501938]
Implicit Neural Representation (INR) networks have shown remarkable versatility due to their flexible compression ratios.
We introduce a codebook containing frequency domain information as a prior input to the INR network.
This enhances the representational power of INR and provides distinctive conditioning for different image blocks.
arXiv Detail & Related papers (2024-05-27T05:52:13Z) - MISC: Ultra-low Bitrate Image Semantic Compression Driven by Large Multimodal Model [78.4051835615796]
This paper proposes a method called Multimodal Image Semantic Compression.
It consists of an LMM encoder for extracting the semantic information of the image, a map encoder to locate the region corresponding to the semantic, an image encoder generates an extremely compressed bitstream, and a decoder reconstructs the image based on the above information.
It can achieve optimal consistency and perception results while saving perceptual 50%, which has strong potential applications in the next generation of storage and communication.
arXiv Detail & Related papers (2024-02-26T17:11:11Z) - Exploring Resolution Fields for Scalable Image Compression with
Uncertainty Guidance [47.96024424475888]
In this work, we explore the potential of resolution fields in scalable image compression.
We propose the reciprocal pyramid network (RPN) that fulfills the need for more adaptable and versatile compression.
Experiments show the superiority of RPN against existing classical and deep learning-based scalable codecs.
arXiv Detail & Related papers (2023-06-15T08:26:24Z) - The Devil Is in the Details: Window-based Attention for Image
Compression [58.1577742463617]
Most existing learned image compression models are based on Convolutional Neural Networks (CNNs)
In this paper, we study the effects of multiple kinds of attention mechanisms for local features learning, then introduce a more straightforward yet effective window-based local attention block.
The proposed window-based attention is very flexible which could work as a plug-and-play component to enhance CNN and Transformer models.
arXiv Detail & Related papers (2022-03-16T07:55:49Z) - Neural JPEG: End-to-End Image Compression Leveraging a Standard JPEG
Encoder-Decoder [73.48927855855219]
We propose a system that learns to improve the encoding performance by enhancing its internal neural representations on both the encoder and decoder ends.
Experiments demonstrate that our approach successfully improves the rate-distortion performance over JPEG across various quality metrics.
arXiv Detail & Related papers (2022-01-27T20:20:03Z) - Implicit Neural Representations for Image Compression [103.78615661013623]
Implicit Neural Representations (INRs) have gained attention as a novel and effective representation for various data types.
We propose the first comprehensive compression pipeline based on INRs including quantization, quantization-aware retraining and entropy coding.
We find that our approach to source compression with INRs vastly outperforms similar prior work.
arXiv Detail & Related papers (2021-12-08T13:02:53Z) - Learned Image Compression with Gaussian-Laplacian-Logistic Mixture Model
and Concatenated Residual Modules [22.818632387206257]
Two key components of learned image compression are the entropy model of the latent representations and the encoding/decoding network architectures.
We propose a more flexible discretized Gaussian-Laplacian-Logistic mixture model (GLLMM) for the latent representations.
In the encoding/decoding network design part, we propose a residual blocks (CRB) where multiple residual blocks are serially connected with additional shortcut connections.
arXiv Detail & Related papers (2021-07-14T02:54:22Z) - How to Exploit the Transferability of Learned Image Compression to
Conventional Codecs [25.622863999901874]
We show how learned image coding can be used as a surrogate to optimize an image for encoding.
Our approach can remodel a conventional image to adjust for the MS-SSIM distortion with over 20% rate improvement without any decoding overhead.
arXiv Detail & Related papers (2020-12-03T12:34:51Z) - Modeling Lost Information in Lossy Image Compression [72.69327382643549]
Lossy image compression is one of the most commonly used operators for digital images.
We propose a novel invertible framework called Invertible Lossy Compression (ILC) to largely mitigate the information loss problem.
arXiv Detail & Related papers (2020-06-22T04:04:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.