論文の概要: Stock Index Prediction using Cointegration test and Quantile Loss
- arxiv url: http://arxiv.org/abs/2109.15045v1
- Date: Wed, 29 Sep 2021 16:20:29 GMT
- ステータス: 処理完了
- システム内更新日: 2021-10-01 14:32:49.329222
- Title: Stock Index Prediction using Cointegration test and Quantile Loss
- Title(参考訳): 統合テストと量子損失を用いた株価指数予測
- Authors: Jaeyoung Cheong, Heejoon Lee, Minjung Kang
- Abstract要約: 本稿では,情報的要因を選択する場合のリターンの観点から,より良い性能が得られる手法を提案する。
2つのRNN変種と量子損失を比較し, 結合試験により得られた5つの因子について比較した。
実験の結果,提案手法は従来の手法よりも優れていることがわかった。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent researches on stock prediction using deep learning methods has been
actively studied. This is the task to predict the movement of stock prices in
the future based on historical trends. The approach to predicting the movement
based solely on the pattern of the historical movement of it on charts, not on
fundamental values, is called the Technical Analysis, which can be divided into
univariate and multivariate methods in the regression task. According to the
latter approach, it is important to select different factors well as inputs to
enhance the performance of the model. Moreover, its performance can depend on
which loss is used to train the model. However, most studies tend to focus on
building the structures of models, not on how to select informative factors as
inputs to train them. In this paper, we propose a method that can get better
performance in terms of returns when selecting informative factors using the
cointegration test and learning the model using quantile loss. We compare the
two RNN variants with quantile loss with only five factors obtained through the
cointegration test among the entire 15 stock index factors collected in the
experiment. The Cumulative return and Sharpe ratio were used to evaluate the
performance of trained models. Our experimental results show that our proposed
method outperforms the other conventional approaches.
- Abstract(参考訳): 近年,ディープラーニングを用いた在庫予測の研究が活発に行われている。
これは、将来の株価の動きを歴史的傾向に基づいて予測する作業である。
基本値ではなく、チャート上での歴史的動きのパターンにのみ基づく動きを予測するアプローチは、技術的分析と呼ばれ、回帰作業において一変量と多変量に分けることができる。
後者のアプローチでは、モデルの性能を高めるために入力と同様に異なる要素を選択することが重要である。
さらに、その性能はモデルをトレーニングするのにどの損失を使用するかによって異なります。
しかし、ほとんどの研究はモデルの構造の構築に焦点をあてる傾向にあり、学習のインプットとして情報的要因をどう選択するかに焦点が当てられている。
本稿では,統合テストを用いて情報的要因を選択し,質的損失を用いてモデルを学ぶ際に,リターンの観点でよりよい性能を得る手法を提案する。
実験で収集した15の株価指数因子のうち, 質的損失を伴う2つのrnn変種と, 統合試験により得られた5つの因子を比較した。
学習モデルの性能を評価するために累積回帰とシャープ比が用いられた。
実験の結果,提案手法は他の手法よりも優れていた。
関連論文リスト
- Distribution Learning for Molecular Regression [10.96062816455682]
Distributional Mixture of Experts (DMoE) はモデルに依存しない、データに依存しない回帰法である。
分子特性予測データセットを用いたDMoEの性能評価を行った。
論文 参考訳(メタデータ) (2024-07-30T00:21:51Z) - The Languini Kitchen: Enabling Language Modelling Research at Different
Scales of Compute [66.84421705029624]
本稿では,アクセル時間で測定された等価計算に基づくモデル比較を可能にする実験的プロトコルを提案する。
私たちは、既存の学術的ベンチマークを上回り、品質、多様性、文書の長さで上回る、大規模で多様で高品質な書籍データセットを前処理します。
この研究は、GPT-2アーキテクチャから派生したフィードフォワードモデルと、10倍のスループットを持つ新しいLSTMの形式でのリカレントモデルという2つのベースラインモデルも提供する。
論文 参考訳(メタデータ) (2023-09-20T10:31:17Z) - Structured Radial Basis Function Network: Modelling Diversity for
Multiple Hypotheses Prediction [51.82628081279621]
多重モード回帰は非定常過程の予測や分布の複雑な混合において重要である。
構造的放射基底関数ネットワークは回帰問題に対する複数の仮説予測器のアンサンブルとして提示される。
この構造モデルにより, このテッセルレーションを効率よく補間し, 複数の仮説対象分布を近似することが可能であることが証明された。
論文 参考訳(メタデータ) (2023-09-02T01:27:53Z) - On Modality Bias Recognition and Reduction [70.69194431713825]
マルチモーダル分類の文脈におけるモダリティバイアス問題について検討する。
本稿では,各ラベルの特徴空間を適応的に学習するプラグアンドプレイ損失関数法を提案する。
本手法は, ベースラインに比べ, 顕著な性能向上を実現している。
論文 参考訳(メタデータ) (2022-02-25T13:47:09Z) - Benign-Overfitting in Conditional Average Treatment Effect Prediction
with Linear Regression [14.493176427999028]
線形回帰モデルを用いて条件平均処理効果(CATE)の予測における良性過剰適合理論について検討した。
一方,IPW-learnerは確率スコアが分かっていればリスクをゼロに収束させるが,T-learnerはランダムな割り当て以外の一貫性を達成できないことを示す。
論文 参考訳(メタデータ) (2022-02-10T18:51:52Z) - Machine Learning for Stock Prediction Based on Fundamental Analysis [13.920569652186714]
フィードフォワードニューラルネットワーク(FNN)、ランダムフォレスト(RF)、適応型ニューラルファジィ推論システム(ANFIS)の3つの機械学習アルゴリズムについて検討する。
RFモデルは最高の予測結果を達成し,FNNとANFISのテスト性能を向上させることができる。
この結果から, 機械学習モデルは, 株式投資に関する意思決定において, 基礎アナリストの助けとなる可能性が示唆された。
論文 参考訳(メタデータ) (2022-01-26T18:48:51Z) - Data-driven Hedging of Stock Index Options via Deep Learning [6.952039070065292]
我々は、オプションデータから直接S&P500インデックスオプションのヘッジ比を学習するために、ディープラーニングモデルを開発する。
特徴の異なる組み合わせを比較し、成熟までの時間を持つフィードフォワードニューラルネットワークモデル、Black-Scholes deltaおよび感情変数が、アウトオブサンプルテストにおいて最善であることを示す。
論文 参考訳(メタデータ) (2021-11-05T12:53:47Z) - Sample Efficient Reinforcement Learning via Model-Ensemble Exploration
and Exploitation [3.728946517493471]
MEEEは楽観的な探索と重み付けによる搾取からなるモデルアンサンブル法である。
我々の手法は、特にサンプル複雑性において、他のモデルフリーおよびモデルベース最先端手法よりも優れています。
論文 参考訳(メタデータ) (2021-07-05T07:18:20Z) - Few-shot Action Recognition with Prototype-centered Attentive Learning [88.10852114988829]
2つの新しい構成要素からなるプロトタイプ中心型注意学習(pal)モデル。
まず,従来のクエリ中心学習目標を補完するために,プロトタイプ中心のコントラスト学習損失を導入する。
第二に、PALは注意深いハイブリッド学習機構を統合しており、アウトレーヤの負の影響を最小限に抑えることができる。
論文 参考訳(メタデータ) (2021-01-20T11:48:12Z) - Counterfactual Predictions under Runtime Confounding [74.90756694584839]
本研究は, 過去のデータからすべての関連要因を抽出した環境で, 事実予測タスクについて検討する。
本稿では,この環境下での対実予測モデル学習のための2次ロバスト手法を提案する。
論文 参考訳(メタデータ) (2020-06-30T15:49:05Z) - Value-driven Hindsight Modelling [68.658900923595]
値推定は強化学習(RL)パラダイムの重要な構成要素である。
モデル学習は、観測系列に存在する豊富な遷移構造を利用することができるが、このアプローチは通常、報酬関数に敏感ではない。
この2つの極点の間に位置するRLにおける表現学習のアプローチを開発する。
これにより、タスクに直接関連し、値関数の学習を加速できる、抽出可能な予測ターゲットが提供される。
論文 参考訳(メタデータ) (2020-02-19T18:10:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。