Interpretability in Safety-Critical FinancialTrading Systems
- URL: http://arxiv.org/abs/2109.15112v1
- Date: Fri, 24 Sep 2021 17:05:58 GMT
- Title: Interpretability in Safety-Critical FinancialTrading Systems
- Authors: Gabriel Deza, Adelin Travers, Colin Rowat, Nicolas Papernot
- Abstract summary: In 2020, some of the world's most sophisticated quant hedge funds suffered losses.
We implement a gradient-based approach for precisely stress-testing how a trading model's forecasts can be manipulated.
We find our approach discovers seemingly in-sample input settings that result in large negative shifts in return distributions.
- Score: 15.060749321774136
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Sophisticated machine learning (ML) models to inform trading in the financial
sector create problems of interpretability and risk management. Seemingly
robust forecasting models may behave erroneously in out of distribution
settings. In 2020, some of the world's most sophisticated quant hedge funds
suffered losses as their ML models were first underhedged, and then
overcompensated. We implement a gradient-based approach for precisely
stress-testing how a trading model's forecasts can be manipulated, and their
effects on downstream tasks at the trading execution level. We construct inputs
-- whether in changes to sentiment or market variables -- that efficiently
affect changes in the return distribution. In an industry-standard trading
pipeline, we perturb model inputs for eight S&P 500 stocks. We find our
approach discovers seemingly in-sample input settings that result in large
negative shifts in return distributions. We provide the financial community
with mechanisms to interpret ML forecasts in trading systems. For the security
community, we provide a compelling application where studying ML robustness
necessitates that one capture an end-to-end system's performance rather than
study a ML model in isolation. Indeed, we show in our evaluation that errors in
the forecasting model's predictions alone are not sufficient for trading
decisions made based on these forecasts to yield a negative return.
Related papers
- When AI Meets Finance (StockAgent): Large Language Model-based Stock Trading in Simulated Real-world Environments [55.19252983108372]
We have developed a multi-agent AI system called StockAgent, driven by LLMs.
The StockAgent allows users to evaluate the impact of different external factors on investor trading.
It avoids the test set leakage issue present in existing trading simulation systems based on AI Agents.
arXiv Detail & Related papers (2024-07-15T06:49:30Z) - Advancing Anomaly Detection: Non-Semantic Financial Data Encoding with LLMs [49.57641083688934]
We introduce a novel approach to anomaly detection in financial data using Large Language Models (LLMs) embeddings.
Our experiments demonstrate that LLMs contribute valuable information to anomaly detection as our models outperform the baselines.
arXiv Detail & Related papers (2024-06-05T20:19:09Z) - Diffusion Variational Autoencoder for Tackling Stochasticity in
Multi-Step Regression Stock Price Prediction [54.21695754082441]
Multi-step stock price prediction over a long-term horizon is crucial for forecasting its volatility.
Current solutions to multi-step stock price prediction are mostly designed for single-step, classification-based predictions.
We combine a deep hierarchical variational-autoencoder (VAE) and diffusion probabilistic techniques to do seq2seq stock prediction.
Our model is shown to outperform state-of-the-art solutions in terms of its prediction accuracy and variance.
arXiv Detail & Related papers (2023-08-18T16:21:15Z) - Can ChatGPT Forecast Stock Price Movements? Return Predictability and Large Language Models [51.3422222472898]
We document the capability of large language models (LLMs) like ChatGPT to predict stock price movements using news headlines.
We develop a theoretical model incorporating information capacity constraints, underreaction, limits-to-arbitrage, and LLMs.
arXiv Detail & Related papers (2023-04-15T19:22:37Z) - Feature Selection with Annealing for Forecasting Financial Time Series [2.44755919161855]
This study provides a comprehensive method for forecasting financial time series based on tactical input output feature mapping techniques using machine learning (ML) models.
Experiments indicate that the FSA algorithm increased the performance of ML models, regardless of problem type.
arXiv Detail & Related papers (2023-03-03T21:33:38Z) - Bayesian Bilinear Neural Network for Predicting the Mid-price Dynamics
in Limit-Order Book Markets [84.90242084523565]
Traditional time-series econometric methods often appear incapable of capturing the true complexity of the multi-level interactions driving the price dynamics.
By adopting a state-of-the-art second-order optimization algorithm, we train a Bayesian bilinear neural network with temporal attention.
By addressing the use of predictive distributions to analyze errors and uncertainties associated with the estimated parameters and model forecasts, we thoroughly compare our Bayesian model with traditional ML alternatives.
arXiv Detail & Related papers (2022-03-07T18:59:54Z) - Predicting Status of Pre and Post M&A Deals Using Machine Learning and
Deep Learning Techniques [0.0]
Risk arbitrage or merger arbitrage is an investment strategy that speculates on the success of M&A deals.
Prediction of the deal status in advance is of great importance for risk arbitrageurs.
We present an ML and DL based methodology for takeover success prediction problem.
arXiv Detail & Related papers (2021-08-05T21:26:45Z) - When Does Uncertainty Matter?: Understanding the Impact of Predictive
Uncertainty in ML Assisted Decision Making [68.19284302320146]
We carry out user studies to assess how people with differing levels of expertise respond to different types of predictive uncertainty.
We found that showing posterior predictive distributions led to smaller disagreements with the ML model's predictions.
This suggests that posterior predictive distributions can potentially serve as useful decision aids which should be used with caution and take into account the type of distribution and the expertise of the human.
arXiv Detail & Related papers (2020-11-12T02:23:53Z) - Empirical Study of Market Impact Conditional on Order-Flow Imbalance [0.0]
We show that for small signed order-flows, the price impact grows linearly with increase in the order-flow imbalance.
We have, further, implemented a machine learning algorithm to forecast market impact given a signed order-flow.
Our findings suggest that machine learning models can be used in estimation of financial variables.
arXiv Detail & Related papers (2020-04-17T14:58:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.