Predicting Status of Pre and Post M&A Deals Using Machine Learning and
Deep Learning Techniques
- URL: http://arxiv.org/abs/2110.09315v1
- Date: Thu, 5 Aug 2021 21:26:45 GMT
- Title: Predicting Status of Pre and Post M&A Deals Using Machine Learning and
Deep Learning Techniques
- Authors: Tugce Karatas, Ali Hirsa
- Abstract summary: Risk arbitrage or merger arbitrage is an investment strategy that speculates on the success of M&A deals.
Prediction of the deal status in advance is of great importance for risk arbitrageurs.
We present an ML and DL based methodology for takeover success prediction problem.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Risk arbitrage or merger arbitrage is a well-known investment strategy that
speculates on the success of M&A deals. Prediction of the deal status in
advance is of great importance for risk arbitrageurs. If a deal is mistakenly
classified as a completed deal, then enormous cost can be incurred as a result
of investing in target company shares. On the contrary, risk arbitrageurs may
lose the opportunity of making profit. In this paper, we present an ML and DL
based methodology for takeover success prediction problem. We initially apply
various ML techniques for data preprocessing such as kNN for data imputation,
PCA for lower dimensional representation of numerical variables, MCA for
categorical variables, and LSTM autoencoder for sentiment scores. We experiment
with different cost functions, different evaluation metrics, and oversampling
techniques to address class imbalance in our dataset. We then implement
feedforward neural networks to predict the success of the deal status. Our
preliminary results indicate that our methodology outperforms the benchmark
models such as logit and weighted logit models. We also integrate sentiment
scores into our methodology using different model architectures, but our
preliminary results show that the performance is not changing much compared to
the simple FFNN framework. We will explore different architectures and employ a
thorough hyperparameter tuning for sentiment scores as a future work.
Related papers
- Harnessing Earnings Reports for Stock Predictions: A QLoRA-Enhanced LLM Approach [6.112119533910774]
This paper introduces an advanced approach by employing Large Language Models (LLMs) instruction fine-tuned with a novel combination of instruction-based techniques and quantized low-rank adaptation (QLoRA) compression.
Our methodology integrates 'base factors', such as financial metric growth and earnings transcripts, with 'external factors', including recent market indices performances and analyst grades, to create a rich, supervised dataset.
This study not only demonstrates the power of integrating cutting-edge AI with fine-tuned financial data but also paves the way for future research in enhancing AI-driven financial analysis tools.
arXiv Detail & Related papers (2024-08-13T04:53:31Z) - When AI Meets Finance (StockAgent): Large Language Model-based Stock Trading in Simulated Real-world Environments [55.19252983108372]
We have developed a multi-agent AI system called StockAgent, driven by LLMs.
The StockAgent allows users to evaluate the impact of different external factors on investor trading.
It avoids the test set leakage issue present in existing trading simulation systems based on AI Agents.
arXiv Detail & Related papers (2024-07-15T06:49:30Z) - American Option Pricing using Self-Attention GRU and Shapley Value
Interpretation [0.0]
We propose a machine learning method for forecasting the prices of SPY (ETF) option based on gated recurrent unit (GRU) and self-attention mechanism.
We built four different machine learning models, including multilayer perceptron (MLP), long short-term memory (LSTM), self-attention LSTM, and self-attention GRU.
arXiv Detail & Related papers (2023-10-19T06:05:46Z) - Conservative Predictions on Noisy Financial Data [6.300716661852326]
Price movements in financial markets are well known to be very noisy.
Traditional rule-learning techniques would seek only high precision rules and refrain from making predictions where their antecedents did not apply.
We apply a similar approach, where a model abstains from making a prediction on data points that it is uncertain on.
arXiv Detail & Related papers (2023-10-18T09:14:19Z) - Diffusion Variational Autoencoder for Tackling Stochasticity in
Multi-Step Regression Stock Price Prediction [54.21695754082441]
Multi-step stock price prediction over a long-term horizon is crucial for forecasting its volatility.
Current solutions to multi-step stock price prediction are mostly designed for single-step, classification-based predictions.
We combine a deep hierarchical variational-autoencoder (VAE) and diffusion probabilistic techniques to do seq2seq stock prediction.
Our model is shown to outperform state-of-the-art solutions in terms of its prediction accuracy and variance.
arXiv Detail & Related papers (2023-08-18T16:21:15Z) - Can ChatGPT Forecast Stock Price Movements? Return Predictability and Large Language Models [51.3422222472898]
We document the capability of large language models (LLMs) like ChatGPT to predict stock price movements using news headlines.
We develop a theoretical model incorporating information capacity constraints, underreaction, limits-to-arbitrage, and LLMs.
arXiv Detail & Related papers (2023-04-15T19:22:37Z) - Bayesian Bilinear Neural Network for Predicting the Mid-price Dynamics
in Limit-Order Book Markets [84.90242084523565]
Traditional time-series econometric methods often appear incapable of capturing the true complexity of the multi-level interactions driving the price dynamics.
By adopting a state-of-the-art second-order optimization algorithm, we train a Bayesian bilinear neural network with temporal attention.
By addressing the use of predictive distributions to analyze errors and uncertainties associated with the estimated parameters and model forecasts, we thoroughly compare our Bayesian model with traditional ML alternatives.
arXiv Detail & Related papers (2022-03-07T18:59:54Z) - Leveraging Unlabeled Data to Predict Out-of-Distribution Performance [63.740181251997306]
Real-world machine learning deployments are characterized by mismatches between the source (training) and target (test) distributions.
In this work, we investigate methods for predicting the target domain accuracy using only labeled source data and unlabeled target data.
We propose Average Thresholded Confidence (ATC), a practical method that learns a threshold on the model's confidence, predicting accuracy as the fraction of unlabeled examples.
arXiv Detail & Related papers (2022-01-11T23:01:12Z) - Interpretability in Safety-Critical FinancialTrading Systems [15.060749321774136]
In 2020, some of the world's most sophisticated quant hedge funds suffered losses.
We implement a gradient-based approach for precisely stress-testing how a trading model's forecasts can be manipulated.
We find our approach discovers seemingly in-sample input settings that result in large negative shifts in return distributions.
arXiv Detail & Related papers (2021-09-24T17:05:58Z) - Learning Multiple Stock Trading Patterns with Temporal Routing Adaptor
and Optimal Transport [8.617532047238461]
We propose a novel architecture, Temporal Adaptor (TRA), to empower existing stock prediction models with the ability to model multiple stock trading patterns.
TRA is a lightweight module that consists of a set independent predictors for learning multiple patterns as well as a router to dispatch samples to different predictors.
We show that the proposed method can improve information coefficient (IC) from 0.053 to 0.059 and 0.051 to 0.056 respectively.
arXiv Detail & Related papers (2021-06-24T12:19:45Z) - Meta-Learned Confidence for Few-shot Learning [60.6086305523402]
A popular transductive inference technique for few-shot metric-based approaches, is to update the prototype of each class with the mean of the most confident query examples.
We propose to meta-learn the confidence for each query sample, to assign optimal weights to unlabeled queries.
We validate our few-shot learning model with meta-learned confidence on four benchmark datasets.
arXiv Detail & Related papers (2020-02-27T10:22:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.