Non-Hermitian physics and engineering in silicon photonics
- URL: http://arxiv.org/abs/2109.15262v1
- Date: Thu, 30 Sep 2021 17:01:15 GMT
- Title: Non-Hermitian physics and engineering in silicon photonics
- Authors: Changqing Wang, Zhoutian Fu, Lan Yang
- Abstract summary: Silicon photonics has been studied as an integratable optical platform where numerous applicable devices and systems are created based on modern physics and state-of-the-art nanotechnologies.
Non-Hermitian physics, which breaks the conventional scope of quantum mechanics based on Hermitian Hamiltonian, has been widely explored in the platform of silicon photonics.
The unconventional properties of exceptional points and parity-time symmetry realized in silicon photonics have created new opportunities for ultrasensitive sensors, laser engineering, control of light propagation, topological mode conversion, etc.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Silicon photonics has been studied as an integratable optical platform where
numerous applicable devices and systems are created based on modern physics and
state-of-the-art nanotechnologies. The implementation of quantum mechanics has
been the driving force of the most intriguing design of photonic structures,
since the optical systems are found of great capability and potential in
realizing the analogues of quantum concepts and phenomena. Non-Hermitian
physics, which breaks the conventional scope of quantum mechanics based on
Hermitian Hamiltonian, has been widely explored in the platform of silicon
photonics, with promising design of optical refractive index, modal coupling
and gain-loss distribution. As we will discuss in this chapter, the
unconventional properties of exceptional points and parity-time symmetry
realized in silicon photonics have created new opportunities for ultrasensitive
sensors, laser engineering, control of light propagation, topological mode
conversion, etc. The marriage between the quantum non-Hermiticity and classical
silicon platforms not only spurs numerous studies on the fundamental physics,
but also enriches the potential functionalities of the integrated photonic
systems.
Related papers
- On chip high-dimensional entangled photon sources [0.0]
We review and introduce the nonlinear optical processes that facilitate on-chip high-dimensional entangled photon sources.
We discuss a range of current implementations of on-chip high-dimensional entangled photon sources and demonstrated applications.
arXiv Detail & Related papers (2024-09-05T03:43:10Z) - Simulation of integrated nonlinear quantum optics: from nonlinear interferometer to temporal walk-off compensator [6.098636361994834]
We introduce a nonlinear quantum photonics simulation framework which can accurately model a variety of features such as adiabatic waveguide, material anisotropy, linear optics components, photon losses, and detectors.
We show that the proposed device scheme can enhance the squeezing parameter of photon-pair sources and the conversion efficiency of quantum frequency converters without relying on higher pump power.
arXiv Detail & Related papers (2024-02-29T16:22:13Z) - All-Optical Spin Initialization via a Cavity Broadened Optical
Transition in On-Chip Hybrid Quantum Photonics [33.607979748917465]
Hybrid quantum photonic systems connect classical photonics to the quantum world and promise to deliver efficient light-matter quantum interfaces.
We demonstrate all-optical readout of the electronic spin of a negatively-charged silicon-vacancy center in a nanodiamond coupled to a silicon nitride photonic crystal cavity.
Our results mark an important step towards the realization of a hybrid spin-photon interface based on silicon nitride photonics and the silicon-vacancy center's electron spin in nanodiamonds with potential use for quantum networks, quantum communication and distributed quantum computation.
arXiv Detail & Related papers (2023-08-29T18:03:11Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Tunable photon-mediated interactions between spin-1 systems [68.8204255655161]
We show how to harness multi-level emitters with several optical transitions to engineer photon-mediated interactions between effective spin-1 systems.
Our results expand the quantum simulation toolbox available in cavity QED and quantum nanophotonic setups.
arXiv Detail & Related papers (2022-06-03T14:52:34Z) - Standard Model Physics and the Digital Quantum Revolution: Thoughts
about the Interface [68.8204255655161]
Advances in isolating, controlling and entangling quantum systems are transforming what was once a curious feature of quantum mechanics into a vehicle for disruptive scientific and technological progress.
From the perspective of three domain science theorists, this article compiles thoughts about the interface on entanglement, complexity, and quantum simulation.
arXiv Detail & Related papers (2021-07-10T06:12:06Z) - Topologically Protecting Squeezed Light on a Photonic Chip [58.71663911863411]
Integrated photonics offers an elegant way to increase the nonlinearity by confining light strictly inside the waveguide.
We experimentally demonstrate the topologically protected nonlinear process of spontaneous four-wave mixing enabling the generation of squeezed light on a silica chip.
arXiv Detail & Related papers (2021-06-14T13:39:46Z) - Modelling Markovian light-matter interactions for quantum optical
devices in the solid state [0.0]
I analyze fundamental components and processes for quantum optical devices with a focus on solid-state quantum systems.
I make heavy use of an analytic quantum trajectories approach applied to a general Markovian master equation of an optically-active quantum system.
arXiv Detail & Related papers (2021-05-13T23:00:34Z) - Space-Time Quantum Metasurfaces [0.0]
We introduce the concept of space-time quantum metasurfaces for dynamical control of quantum light.
Photonic platforms based on the space-time quantum metasurface concept have the potential to enable novel functionalities.
arXiv Detail & Related papers (2021-01-25T21:48:06Z) - Entanglement transfer, accumulation and retrieval via quantum-walk-based
qubit-qudit dynamics [50.591267188664666]
Generation and control of quantum correlations in high-dimensional systems is a major challenge in the present landscape of quantum technologies.
We propose a protocol that is able to attain entangled states of $d$-dimensional systems through a quantum-walk-based it transfer & accumulate mechanism.
In particular, we illustrate a possible photonic implementation where the information is encoded in the orbital angular momentum and polarization degrees of freedom of single photons.
arXiv Detail & Related papers (2020-10-14T14:33:34Z) - Metasurfaces for Quantum Photonics [62.997667081978825]
Development of metasurfaces allowed to replace bulky optical assemblies with thin nanostructured films.
Recent progress in the field of quantum-photonics applications of metasurfaces.
arXiv Detail & Related papers (2020-07-29T10:14:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.