All-Optical Spin Initialization via a Cavity Broadened Optical
Transition in On-Chip Hybrid Quantum Photonics
- URL: http://arxiv.org/abs/2308.15544v1
- Date: Tue, 29 Aug 2023 18:03:11 GMT
- Title: All-Optical Spin Initialization via a Cavity Broadened Optical
Transition in On-Chip Hybrid Quantum Photonics
- Authors: Lukas Antoniuk, Niklas Lettner, Anna P. Ovvyan, Simon Haugg, Marco
Klotz, Helge Gehring, Daniel Wendland, Viatcheslav N. Agafonov, Wolfram H. P.
Pernice and Alexander Kubanek
- Abstract summary: Hybrid quantum photonic systems connect classical photonics to the quantum world and promise to deliver efficient light-matter quantum interfaces.
We demonstrate all-optical readout of the electronic spin of a negatively-charged silicon-vacancy center in a nanodiamond coupled to a silicon nitride photonic crystal cavity.
Our results mark an important step towards the realization of a hybrid spin-photon interface based on silicon nitride photonics and the silicon-vacancy center's electron spin in nanodiamonds with potential use for quantum networks, quantum communication and distributed quantum computation.
- Score: 33.607979748917465
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Hybrid quantum photonic systems connect classical photonics to the quantum
world and promise to deliver efficient light-matter quantum interfaces while
leveraging the advantages of both, the classical and the quantum, subsystems.
However, combining efficient, scalable photonics and solid state quantum
systems with desirable optical and spin properties remains a formidable
challenge. In particular the access to individual spin states and coherent
mapping to photons remains unsolved for these systems. In this letter, we
demonstrate all-optical initialization and readout of the electronic spin of a
negatively-charged silicon-vacancy center in a nanodiamond coupled to a silicon
nitride photonic crystal cavity. We characterize relevant parameters of the
coupled emitter-cavity system and determine the silicon-vacancy center's
spin-relaxation and spin-decoherence rate. Our results mark an important step
towards the realization of a hybrid spin-photon interface based on silicon
nitride photonics and the silicon-vacancy center's electron spin in
nanodiamonds with potential use for quantum networks, quantum communication and
distributed quantum computation.
Related papers
- Optical single-shot readout of spin qubits in silicon [41.94295877935867]
silicon nanofabrication offers unique advantages for integration and up-scaling.
Small spin-qubit registers have exceeded error-correction thresholds, their connection to large quantum computers is an outstanding challenge.
We implement such an efficient spin-photon interface based on erbium dopants in a nanophotonic resonator.
arXiv Detail & Related papers (2024-05-08T18:30:21Z) - Heterogeneous integration of solid state quantum systems with a foundry
photonics platform [0.14680035572775535]
Diamond colour centres are promising optically-addressable solid state spins that can be matter-qubits.
We demonstrate heterogeneous integration of NV centres in nanodiamond with low-fluorescence silicon nitride photonics.
arXiv Detail & Related papers (2023-04-20T11:40:42Z) - All-Optical Nuclear Quantum Sensing using Nitrogen-Vacancy Centers in
Diamond [52.77024349608834]
Microwave or radio-frequency driving poses a significant limitation for miniaturization, energy-efficiency and non-invasiveness of quantum sensors.
We overcome this limitation by demonstrating a purely optical approach to coherent quantum sensing.
Our results pave the way for highly compact quantum sensors to be employed for magnetometry or gyroscopy applications.
arXiv Detail & Related papers (2022-12-14T08:34:11Z) - Tunable photon-mediated interactions between spin-1 systems [68.8204255655161]
We show how to harness multi-level emitters with several optical transitions to engineer photon-mediated interactions between effective spin-1 systems.
Our results expand the quantum simulation toolbox available in cavity QED and quantum nanophotonic setups.
arXiv Detail & Related papers (2022-06-03T14:52:34Z) - Inverted fine structure of a 6H-SiC qubit enabling robust spin-photon
interface [0.0]
A type of silicon vacancy qubits in 6H-SiC possesses an unusual inverted fine structure.
This results in the directional emission of light along the hexagonal crystallographic axis, making photon extraction more efficient.
Our experimental and theoretical approaches provide a deep insight into the optical and spin properties of atomic-scale qubits in SiC.
arXiv Detail & Related papers (2021-07-14T20:58:22Z) - Multidimensional cluster states using a single spin-photon interface
coupled strongly to an intrinsic nuclear register [48.7576911714538]
Photonic cluster states are a powerful resource for measurement-based quantum computing and loss-tolerant quantum communication.
We propose the generation of multi-dimensional lattice cluster states using a single, efficient spin-photon interface coupled strongly to a nuclear register.
arXiv Detail & Related papers (2021-04-26T14:41:01Z) - Room temperature single-photon emitters in silicon nitride [97.75917079876487]
We report on the first-time observation of room-temperature single-photon emitters in silicon nitride (SiN) films grown on silicon dioxide substrates.
As SiN has recently emerged as one of the most promising materials for integrated quantum photonics, the proposed platform is suitable for scalable fabrication of quantum on-chip devices.
arXiv Detail & Related papers (2021-04-16T14:20:11Z) - Hybrid quantum photonics based on artificial atoms placed inside one
hole of a photonic crystal cavity [47.187609203210705]
Hybrid quantum photonics with SiV$-$-containing nanodiamonds inside one hole of a one-dimensional, free-standing, Si$_3$N$_4$-based photonic crystal cavity is presented.
The resulting photon flux is increased by more than a factor of 14 as compared to free-space.
Results mark an important step to realize quantum network nodes based on hybrid quantum photonics with SiV$-$- center in nanodiamonds.
arXiv Detail & Related papers (2020-12-21T17:22:25Z) - Integrated quantum photonics with silicon carbide: challenges and
prospects [0.0]
Quantum computing protocols place strict limits on the acceptable photon losses in the system.
Most materials that host spin defects are challenging to process.
Silicon carbide (SiC) is well-suited to bridge the classical-quantum photonics gap.
arXiv Detail & Related papers (2020-10-29T15:44:13Z) - Coupling colloidal quantum dots to gap waveguides [62.997667081978825]
coupling between single photon emitters and integrated photonic circuits is an emerging topic relevant for quantum information science and other nanophotonic applications.
We investigate the coupling between a hybrid system of colloidal quantum dots and propagating gap modes of a silicon nitride waveguide system.
arXiv Detail & Related papers (2020-03-30T21:18:27Z) - Spin-controlled generation of indistinguishable and distinguishable
photons from silicon vacancy centres in silicon carbide [1.3428816436609148]
Quantum systems combining indistinguishable photon generation and spin-based quantum information processing are essential for remote quantum applications and networking.
Here, we demonstrate controlled emission of indistinguishable and distinguishable photons via coherent spin manipulation.
We exploit the system's intimate spin-photon relation to spin-control the colour and indistinguishability of consecutively emitted photons.
arXiv Detail & Related papers (2020-01-08T11:32:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.