T\"oRF: Time-of-Flight Radiance Fields for Dynamic Scene View Synthesis
- URL: http://arxiv.org/abs/2109.15271v1
- Date: Thu, 30 Sep 2021 17:12:59 GMT
- Title: T\"oRF: Time-of-Flight Radiance Fields for Dynamic Scene View Synthesis
- Authors: Benjamin Attal, Eliot Laidlaw, Aaron Gokaslan, Changil Kim, Christian
Richardt, James Tompkin, Matthew O'Toole
- Abstract summary: We introduce a neural representation based on an image formation model for continuous-wave ToF cameras.
We show that this approach improves robustness of dynamic scene reconstruction to erroneous calibration and large motions.
- Score: 32.878225196378374
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Neural networks can represent and accurately reconstruct radiance fields for
static 3D scenes (e.g., NeRF). Several works extend these to dynamic scenes
captured with monocular video, with promising performance. However, the
monocular setting is known to be an under-constrained problem, and so methods
rely on data-driven priors for reconstructing dynamic content. We replace these
priors with measurements from a time-of-flight (ToF) camera, and introduce a
neural representation based on an image formation model for continuous-wave ToF
cameras. Instead of working with processed depth maps, we model the raw ToF
sensor measurements to improve reconstruction quality and avoid issues with low
reflectance regions, multi-path interference, and a sensor's limited
unambiguous depth range. We show that this approach improves robustness of
dynamic scene reconstruction to erroneous calibration and large motions, and
discuss the benefits and limitations of integrating RGB+ToF sensors that are
now available on modern smartphones.
Related papers
- Deblurring Neural Radiance Fields with Event-driven Bundle Adjustment [23.15130387716121]
We propose Bundle Adjustment for Deblurring Neural Radiance Fields (EBAD-NeRF) to jointly optimize the learnable poses and NeRF parameters.
EBAD-NeRF can obtain accurate camera trajectory during the exposure time and learn a sharper 3D representations compared to prior works.
arXiv Detail & Related papers (2024-06-20T14:33:51Z) - Gear-NeRF: Free-Viewpoint Rendering and Tracking with Motion-aware Spatio-Temporal Sampling [70.34875558830241]
We present a way for learning a-temporal (4D) embedding, based on semantic semantic gears to allow for stratified modeling of dynamic regions of rendering the scene.
At the same time, almost for free, our tracking approach enables free-viewpoint of interest - a functionality not yet achieved by existing NeRF-based methods.
arXiv Detail & Related papers (2024-06-06T03:37:39Z) - SMURF: Continuous Dynamics for Motion-Deblurring Radiance Fields [14.681688453270523]
We propose sequential motion understanding radiance fields (SMURF), a novel approach that employs neural ordinary differential equation (Neural-ODE) to model continuous camera motion.
Our model, rigorously evaluated against benchmark datasets, demonstrates state-of-the-art performance both quantitatively and qualitatively.
arXiv Detail & Related papers (2024-03-12T11:32:57Z) - CF-NeRF: Camera Parameter Free Neural Radiance Fields with Incremental
Learning [23.080474939586654]
We propose a novel underlinecamera parameter underlinefree neural radiance field (CF-NeRF)
CF-NeRF incrementally reconstructs 3D representations and recovers the camera parameters inspired by incremental structure from motion.
Results demonstrate that CF-NeRF is robust to camera rotation and achieves state-of-the-art results without providing prior information and constraints.
arXiv Detail & Related papers (2023-12-14T09:09:31Z) - NeVRF: Neural Video-based Radiance Fields for Long-duration Sequences [53.8501224122952]
We propose a novel neural video-based radiance fields (NeVRF) representation.
NeVRF marries neural radiance field with image-based rendering to support photo-realistic novel view synthesis on long-duration dynamic inward-looking scenes.
Our experiments demonstrate the effectiveness of NeVRF in enabling long-duration sequence rendering, sequential data reconstruction, and compact data storage.
arXiv Detail & Related papers (2023-12-10T11:14:30Z) - ReconFusion: 3D Reconstruction with Diffusion Priors [104.73604630145847]
We present ReconFusion to reconstruct real-world scenes using only a few photos.
Our approach leverages a diffusion prior for novel view synthesis, trained on synthetic and multiview datasets.
Our method synthesizes realistic geometry and texture in underconstrained regions while preserving the appearance of observed regions.
arXiv Detail & Related papers (2023-12-05T18:59:58Z) - DynaMoN: Motion-Aware Fast and Robust Camera Localization for Dynamic Neural Radiance Fields [71.94156412354054]
We propose Dynamic Motion-Aware Fast and Robust Camera Localization for Dynamic Neural Radiance Fields (DynaMoN)
DynaMoN handles dynamic content for initial camera pose estimation and statics-focused ray sampling for fast and accurate novel-view synthesis.
We extensively evaluate our approach on two real-world dynamic datasets, the TUM RGB-D dataset and the BONN RGB-D Dynamic dataset.
arXiv Detail & Related papers (2023-09-16T08:46:59Z) - BAD-NeRF: Bundle Adjusted Deblur Neural Radiance Fields [9.744593647024253]
We present a novel bundle adjusted deblur Neural Radiance Fields (BAD-NeRF)
BAD-NeRF can be robust to severe motion blurred images and inaccurate camera poses.
Our approach models the physical image formation process of a motion blurred image, and jointly learns the parameters of NeRF.
arXiv Detail & Related papers (2022-11-23T10:53:37Z) - Deblurred Neural Radiance Field with Physical Scene Priors [6.128295038453101]
This paper proposes a DP-NeRF framework for blurred images, which is constrained with two physical priors.
We present extensive experimental results for synthetic and real scenes with two types of blur: camera motion blur and defocus blur.
arXiv Detail & Related papers (2022-11-22T06:40:53Z) - CLONeR: Camera-Lidar Fusion for Occupancy Grid-aided Neural
Representations [77.90883737693325]
This paper proposes CLONeR, which significantly improves upon NeRF by allowing it to model large outdoor driving scenes observed from sparse input sensor views.
This is achieved by decoupling occupancy and color learning within the NeRF framework into separate Multi-Layer Perceptrons (MLPs) trained using LiDAR and camera data, respectively.
In addition, this paper proposes a novel method to build differentiable 3D Occupancy Grid Maps (OGM) alongside the NeRF model, and leverage this occupancy grid for improved sampling of points along a ray for rendering in metric space.
arXiv Detail & Related papers (2022-09-02T17:44:50Z) - Learning Dynamic View Synthesis With Few RGBD Cameras [60.36357774688289]
We propose to utilize RGBD cameras to synthesize free-viewpoint videos of dynamic indoor scenes.
We generate point clouds from RGBD frames and then render them into free-viewpoint videos via a neural feature.
We introduce a simple Regional Depth-Inpainting module that adaptively inpaints missing depth values to render complete novel views.
arXiv Detail & Related papers (2022-04-22T03:17:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.