Truncated phase-based quantum arithmetic: error propagation and resource reduction
- URL: http://arxiv.org/abs/2110.00217v2
- Date: Mon, 1 Jul 2024 15:24:05 GMT
- Title: Truncated phase-based quantum arithmetic: error propagation and resource reduction
- Authors: G. A. L. White, C. D. Hill, L. C. L. Hollenberg,
- Abstract summary: We present a modification of the Draper quantum Fourier adder which eliminates small-angle rotations to highly coarse levels.
We show that the inherited loss of fidelity is directly given by the rate of carry and borrow bits in the subroutine.
Surprisingly, we find that each of the $7times 107$ quantum Fourier transforms may be truncated down to $pi/64$, with additive rotations left only slightly finer.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: There are two important, and potentially interconnecting, avenues to the realisation of large-scale quantum algorithms: improvement of the hardware, and reduction of resource requirements demanded by algorithm components. In focusing on the latter, one crucial subroutine to many sought-after applications is the quantum adder. A variety of different implementations exist with idiosyncratic pros and cons. One of these, the Draper quantum Fourier adder, offers the lowest qubit count of any adder, but requires a substantial number of gates as well as extremely fine rotations. In this work, we present a modification of the Draper adder which eliminates small-angle rotations to highly coarse levels, matched with some strategic corrections. This reduces hardware requirements without sacrificing the qubit saving. We show that the inherited loss of fidelity is directly given by the rate of carry and borrow bits in the computation. We derive formulae to predict this, complemented by complete gate-level matrix product state simulations of the circuit. Moreover, we analytically describe the effects of possible stochastic control error. We present an in-depth analysis of this approach in the context of Shor's algorithm, focusing on the factoring of RSA-2048. Surprisingly, we find that each of the $7\times 10^7$ quantum Fourier transforms may be truncated down to $\pi/64$, with additive rotations left only slightly finer. This result is much more efficient than previously realised. We quantify savings both in terms of logical resources and raw magic states, demonstrating that phase adders can be competitive with Toffoli-based constructions.
Related papers
- Practical implementation of a single-qubit rotation algorithm [0.0]
The Toffoli is an important universal quantum gate, and will alongside the Clifford gates be available in future Fault-Tolerant Quantum Computing hardware.
We evaluate the performance of a recently proposed single-qubit rotation algorithm using the Clifford+Toffoli gate set.
arXiv Detail & Related papers (2024-10-24T13:53:21Z) - Fast Flux-Activated Leakage Reduction for Superconducting Quantum
Circuits [84.60542868688235]
leakage out of the computational subspace arising from the multi-level structure of qubit implementations.
We present a resource-efficient universal leakage reduction unit for superconducting qubits using parametric flux modulation.
We demonstrate that using the leakage reduction unit in repeated weight-two stabilizer measurements reduces the total number of detected errors in a scalable fashion.
arXiv Detail & Related papers (2023-09-13T16:21:32Z) - Faster-than-Clifford Simulations of Entanglement Purification Circuits
and Their Full-stack Optimization [0.0]
We develop a simulation algorithm for distillation circuits with gate-simulation complexity of $mathcalO(1)$ steps.
It enabled us to use a simple discrete optimization algorithm to design purification circuits from $n$ raw Bell pairs to $k$ purified pairs.
The resulting purification circuits are the best-known purification circuits for finite-size noisy hardware.
arXiv Detail & Related papers (2023-07-12T18:00:00Z) - Quantum Fourier Addition, Simplified to Toffoli Addition [92.18777020401484]
We present the first systematic translation of the QFT-addition circuit into a Toffoli-based adder.
Instead of using approximate decompositions of the gates from the QFT circuit, it is more efficient to merge gates.
arXiv Detail & Related papers (2022-09-30T02:36:42Z) - Outlier Suppression: Pushing the Limit of Low-bit Transformer Language
Models [57.933500846742234]
Recent work recognizes that structured outliers are the critical bottleneck for quantization performance.
We propose an outlier suppression framework including two components: Gamma Migration and Token-Wise Clipping.
This framework effectively suppresses the outliers and can be used in a plug-and-play mode.
arXiv Detail & Related papers (2022-09-27T12:05:59Z) - Resource Optimisation of Coherently Controlled Quantum Computations with
the PBS-calculus [55.2480439325792]
Coherent control of quantum computations can be used to improve some quantum protocols and algorithms.
We refine the PBS-calculus, a graphical language for coherent control inspired by quantum optics.
arXiv Detail & Related papers (2022-02-10T18:59:52Z) - Scaling Quantum Approximate Optimization on Near-term Hardware [49.94954584453379]
We quantify scaling of the expected resource requirements by optimized circuits for hardware architectures with varying levels of connectivity.
We show the number of measurements, and hence total time to synthesizing solution, grows exponentially in problem size and problem graph degree.
These problems may be alleviated by increasing hardware connectivity or by recently proposed modifications to the QAOA that achieve higher performance with fewer circuit layers.
arXiv Detail & Related papers (2022-01-06T21:02:30Z) - Optimal qubit assignment and routing via integer programming [0.22940141855172028]
We consider the problem of mapping a logical quantum circuit onto a given hardware with limited two-qubit connectivity.
We model this problem as an integer linear program, using a network flow formulation with binary variables.
We consider several cost functions: an approximation of the fidelity of the circuit, its total depth, and a measure of cross-talk.
arXiv Detail & Related papers (2021-06-11T15:02:26Z) - AQD: Towards Accurate Fully-Quantized Object Detection [94.06347866374927]
We propose an Accurate Quantized object Detection solution, termed AQD, to get rid of floating-point computation.
Our AQD achieves comparable or even better performance compared with the full-precision counterpart under extremely low-bit schemes.
arXiv Detail & Related papers (2020-07-14T09:07:29Z) - On connectivity-dependent resource requirements for digital quantum
simulation of $d$-level particles [0.703901004178046]
We study the number of SWAP gates required to Trotterize commonly used quantum operators.
Results are applicable in hardware co-design and in choosing efficient qudit encodings for a given set of near-term quantum hardware.
arXiv Detail & Related papers (2020-05-26T22:28:51Z) - Improved quantum circuits for elliptic curve discrete logarithms [6.058525641792685]
We present improved quantum circuits for elliptic curve scalar multiplication.
We optimize low-level components such as reversible integer and modular arithmetic.
We provide a full implementation of point addition in the Q# quantum programming language.
arXiv Detail & Related papers (2020-01-27T04:08:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.