論文の概要: Inductive Representation Learning in Temporal Networks via Mining
Neighborhood and Community Influences
- arxiv url: http://arxiv.org/abs/2110.00267v3
- Date: Thu, 1 Jun 2023 08:38:27 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-03 02:21:06.300793
- Title: Inductive Representation Learning in Temporal Networks via Mining
Neighborhood and Community Influences
- Title(参考訳): 鉱業地区と地域影響による時間ネットワークにおける帰納的表現学習
- Authors: Meng Liu, Yong Liu
- Abstract要約: ネットワーク表現学習は、ネットワーク内の各ノードに対する埋め込みを生成することを目的としている。
我々は,マイニング地区と時間ネットワークにおけるコミュニティの影響から,MNCIと呼ばれる新しい帰納的ネットワーク表現学習手法を提案する。
実世界の複数のデータセットについて広範な実験を行い、MNCIと様々なタスクにおける最先端のベースライン手法を比較した。
- 参考スコア(独自算出の注目度): 18.299902872349538
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Network representation learning aims to generate an embedding for each node
in a network, which facilitates downstream machine learning tasks such as node
classification and link prediction. Current work mainly focuses on transductive
network representation learning, i.e. generating fixed node embeddings, which
is not suitable for real-world applications. Therefore, we propose a new
inductive network representation learning method called MNCI by mining
neighborhood and community influences in temporal networks. We propose an
aggregator function that integrates neighborhood influence with community
influence to generate node embeddings at any time. We conduct extensive
experiments on several real-world datasets and compare MNCI with several
state-of-the-art baseline methods on various tasks, including node
classification and network visualization. The experimental results show that
MNCI achieves better performance than baselines.
- Abstract(参考訳): ネットワーク表現学習は、ノード分類やリンク予測などの下流機械学習タスクを容易にするネットワーク内の各ノードへの埋め込みを生成することを目的としている。
現在の研究は主にトランスダクティブネットワーク表現学習(すなわち、実世界のアプリケーションには適さない固定ノード埋め込みの生成)に焦点を当てている。
そこで本研究では,マイニング地区と時間ネットワークにおけるコミュニティの影響から,MNCIと呼ばれる新しい帰納的ネットワーク表現学習手法を提案する。
本研究では,地域の影響をコミュニティの影響と統合してノード埋め込みを生成するアグリゲータ関数を提案する。
複数の実世界のデータセットについて広範な実験を行い、ノード分類やネットワーク可視化など、様々なタスクにおけるmnciと最先端のベースライン手法を比較した。
実験の結果,MNCIはベースラインよりも優れた性能を示した。
関連論文リスト
- Impact of network topology on the performance of Decentralized Federated
Learning [4.618221836001186]
分散機械学習は、インフラストラクチャの課題とプライバシの懸念に対処し、勢いを増している。
本研究では,3つのネットワークトポロジと6つのデータ分散手法を用いて,ネットワーク構造と学習性能の相互作用について検討する。
モデル集約時の希釈効果に起因する周辺ノードから中心ノードへの知識伝達の課題を強調した。
論文 参考訳(メタデータ) (2024-02-28T11:13:53Z) - Influencer Detection with Dynamic Graph Neural Networks [56.1837101824783]
インフルエンサー検出のための動的グラフニューラルネットワーク(GNN)の構成について検討する。
GNNにおける深層多面的注意と時間特性の符号化が性能を著しく向上させることを示す。
論文 参考訳(メタデータ) (2022-11-15T13:00:25Z) - Associative Learning for Network Embedding [20.873120242498292]
新たな視点からネットワーク埋め込み手法を提案する。
ネットワークは各ノードの内容とそのノードの隣人との関係を学習する。
提案手法は,ノード分類やリンク予測などの下流タスクに対して評価を行う。
論文 参考訳(メタデータ) (2022-08-30T16:35:45Z) - Network Representation Learning: From Preprocessing, Feature Extraction
to Node Embedding [9.844802841686105]
ネットワーク表現学習(NRL)は、ソーシャルネットワーク、知識グラフ、複雑なバイオメディカルおよび物理情報ネットワークの従来のグラフマイニングを進歩させる。
本稿では,同種ネットワーク上でのネットワーク表現学習における設計原理と異なるノード埋め込み手法について概説する。
論文 参考訳(メタデータ) (2021-10-14T17:46:37Z) - Temporal Graph Network Embedding with Causal Anonymous Walks
Representations [54.05212871508062]
本稿では,時間グラフネットワークに基づく動的ネットワーク表現学習のための新しいアプローチを提案する。
評価のために、時間的ネットワーク埋め込みの評価のためのベンチマークパイプラインを提供する。
欧州の大手銀行が提供した実世界のダウンストリームグラフ機械学習タスクにおいて、我々のモデルの適用性と優れた性能を示す。
論文 参考訳(メタデータ) (2021-08-19T15:39:52Z) - A Comprehensive Survey on Community Detection with Deep Learning [93.40332347374712]
コミュニティは、ネットワーク内の他のコミュニティと異なるメンバーの特徴と接続を明らかにする。
この調査は、最先端の手法の様々なカテゴリをカバーする新しい分類法を考案し、提案する。
ディープニューラルネットワーク(Deep Neural Network)は、畳み込みネットワーク(convolutional network)、グラフアテンションネットワーク( graph attention network)、生成的敵ネットワーク(generative adversarial network)、オートエンコーダ(autoencoder)に分けられる。
論文 参考訳(メタデータ) (2021-05-26T14:37:07Z) - Node2Seq: Towards Trainable Convolutions in Graph Neural Networks [59.378148590027735]
今回提案するグラフネットワーク層であるNode2Seqは,隣接ノードの重みを明示的に調整可能なノード埋め込みを学習する。
対象ノードに対して,当手法は注意メカニズムを介して隣接ノードをソートし,さらに1D畳み込みニューラルネットワーク(CNN)を用いて情報集約のための明示的な重み付けを行う。
また, 特徴学習のための非局所的情報を, 注意スコアに基づいて適応的に組み込むことを提案する。
論文 参考訳(メタデータ) (2021-01-06T03:05:37Z) - DINE: A Framework for Deep Incomplete Network Embedding [33.97952453310253]
本稿では,ディープ不完全ネットワーク埋め込み,すなわちDINEを提案する。
まず、期待最大化フレームワークを用いて、部分的に観測可能なネットワーク内のノードとエッジの両方を含む欠落部分を完成させる。
マルチラベル分類およびリンク予測タスクにおいて,DINEを3つのネットワーク上で評価する。
論文 参考訳(メタデータ) (2020-08-09T04:59:35Z) - Graph Prototypical Networks for Few-shot Learning on Attributed Networks [72.31180045017835]
グラフメタ学習フレームワーク - Graph Prototypeal Networks (GPN) を提案する。
GPNは、属性付きネットワーク上でテキストミータ学習を行い、ターゲット分類タスクを扱うための高度に一般化可能なモデルを導出する。
論文 参考訳(メタデータ) (2020-06-23T04:13:23Z) - A Transductive Multi-Head Model for Cross-Domain Few-Shot Learning [72.30054522048553]
本稿では,クロスドメインなFew-Shot学習問題に対処するため,TMHFS(Transductive Multi-Head Few-Shot Learning)を提案する。
提案手法は, 4つの異なる対象領域において, 強いベースライン, 微調整を著しく上回っている。
論文 参考訳(メタデータ) (2020-06-08T02:39:59Z) - Modeling Dynamic Heterogeneous Network for Link Prediction using
Hierarchical Attention with Temporal RNN [16.362525151483084]
我々はDyHATRと呼ばれる新しい動的ヘテロジニアスネットワーク埋め込み法を提案する。
階層的な注意を使って異質な情報を学習し、進化パターンを捉えるために時間的注意を伴う繰り返しニューラルネットワークを組み込む。
リンク予測のための4つの実世界のデータセットに対して,本手法をベンチマークした。
論文 参考訳(メタデータ) (2020-04-01T17:16:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。