Cellular traffic offloading via Opportunistic Networking with
Reinforcement Learning
- URL: http://arxiv.org/abs/2110.00397v1
- Date: Fri, 1 Oct 2021 13:34:12 GMT
- Title: Cellular traffic offloading via Opportunistic Networking with
Reinforcement Learning
- Authors: Lorenzo Valerio, Raffaele Bruno, Andrea Passarella
- Abstract summary: We propose an adaptive offloading solution based on the Reinforcement Learning framework.
We evaluate and compare the performance of two well-known learning algorithms: Actor-Critic and Q-Learning.
Our solution achieves a higher level of offloading with respect to other state-of-the-art approaches.
- Score: 0.5758073912084364
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The widespread diffusion of mobile phones is triggering an exponential growth
of mobile data traffic that is likely to cause, in the near future,
considerable traffic overload issues even in last-generation cellular networks.
Offloading part of the traffic to other networks is considered a very promising
approach and, in particular, in this paper, we consider offloading through
opportunistic networks of users' devices. However, the performance of this
solution strongly depends on the pattern of encounters between mobile nodes,
which should therefore be taken into account when designing offloading control
algorithms. In this paper, we propose an adaptive offloading solution based on
the Reinforcement Learning framework and we evaluate and compare the
performance of two well-known learning algorithms: Actor-Critic and Q-Learning.
More precisely, in our solution the controller of the dissemination process,
once trained, is able to select a proper number of content replicas to be
injected into the opportunistic network to guarantee the timely delivery of
contents to all interested users. We show that our system based on
Reinforcement Learning is able to automatically learn a very efficient strategy
to reduce the traffic on the cellular network, without relying on any
additional context information about the opportunistic network. Our solution
achieves a higher level of offloading with respect to other state-of-the-art
approaches, in a range of different mobility settings. Moreover, we show that a
more refined learning solution, based on the Actor-Critic algorithm, is
significantly more efficient than a simpler solution based on Q-learning.
Related papers
- Deep Learning-driven Mobile Traffic Measurement Collection and Analysis [0.43512163406552007]
In this thesis, we harness the powerful hierarchical feature learning abilities of Deep Learning (DL) techniques in both spatial and temporal domains.
We develop solutions for precise city-scale mobile traffic analysis and forecasting.
arXiv Detail & Related papers (2024-10-14T06:53:45Z) - DNN Partitioning, Task Offloading, and Resource Allocation in Dynamic Vehicular Networks: A Lyapunov-Guided Diffusion-Based Reinforcement Learning Approach [49.56404236394601]
We formulate the problem of joint DNN partitioning, task offloading, and resource allocation in Vehicular Edge Computing.
Our objective is to minimize the DNN-based task completion time while guaranteeing the system stability over time.
We propose a Multi-Agent Diffusion-based Deep Reinforcement Learning (MAD2RL) algorithm, incorporating the innovative use of diffusion models.
arXiv Detail & Related papers (2024-06-11T06:31:03Z) - Knowledge-Driven Multi-Agent Reinforcement Learning for Computation
Offloading in Cybertwin-Enabled Internet of Vehicles [24.29177900273616]
We propose a knowledge-driven multi-agent reinforcement learning (KMARL) approach to reduce the latency of task offloading in cybertwin-enabled IoV.
Specifically, in the considered scenario, the cybertwin serves as a communication agent for each vehicle to exchange information and make offloading decisions in the virtual space.
arXiv Detail & Related papers (2023-08-04T09:11:37Z) - Multi-agent Reinforcement Learning with Graph Q-Networks for Antenna
Tuning [60.94661435297309]
The scale of mobile networks makes it challenging to optimize antenna parameters using manual intervention or hand-engineered strategies.
We propose a new multi-agent reinforcement learning algorithm to optimize mobile network configurations globally.
We empirically demonstrate the performance of the algorithm on an antenna tilt tuning problem and a joint tilt and power control problem in a simulated environment.
arXiv Detail & Related papers (2023-01-20T17:06:34Z) - AI-aided Traffic Control Scheme for M2M Communications in the Internet
of Vehicles [61.21359293642559]
The dynamics of traffic and the heterogeneous requirements of different IoV applications are not considered in most existing studies.
We consider a hybrid traffic control scheme and use proximal policy optimization (PPO) method to tackle it.
arXiv Detail & Related papers (2022-03-05T10:54:05Z) - Offline Contextual Bandits for Wireless Network Optimization [107.24086150482843]
In this paper, we investigate how to learn policies that can automatically adjust the configuration parameters of every cell in the network in response to the changes in the user demand.
Our solution combines existent methods for offline learning and adapts them in a principled way to overcome crucial challenges arising in this context.
arXiv Detail & Related papers (2021-11-11T11:31:20Z) - Federated Learning over Wireless IoT Networks with Optimized
Communication and Resources [98.18365881575805]
Federated learning (FL) as a paradigm of collaborative learning techniques has obtained increasing research attention.
It is of interest to investigate fast responding and accurate FL schemes over wireless systems.
We show that the proposed communication-efficient federated learning framework converges at a strong linear rate.
arXiv Detail & Related papers (2021-10-22T13:25:57Z) - A Survey on Reinforcement Learning-Aided Caching in Mobile Edge Networks [12.470038211838363]
Mobile networks are experiencing tremendous increase in data volume and user density.
An efficient technique to alleviate this issue is to bring the data closer to the users by exploiting the caches of edge network nodes.
The fusion of machine learning and wireless networks offers a viable way for network optimization.
arXiv Detail & Related papers (2021-05-12T10:30:56Z) - Toward Multiple Federated Learning Services Resource Sharing in Mobile
Edge Networks [88.15736037284408]
We study a new model of multiple federated learning services at the multi-access edge computing server.
We propose a joint resource optimization and hyper-learning rate control problem, namely MS-FEDL.
Our simulation results demonstrate the convergence performance of our proposed algorithms.
arXiv Detail & Related papers (2020-11-25T01:29:41Z) - Computation Offloading in Heterogeneous Vehicular Edge Networks: On-line
and Off-policy Bandit Solutions [30.606518785629046]
In a fast-varying vehicular environment, the latency in offloading arises as a result of network congestion.
We propose an on-line algorithm and an off-policy learning algorithm based on bandit theory.
We show that the proposed solutions adapt to the traffic changes of the network by selecting the least congested network.
arXiv Detail & Related papers (2020-08-14T11:48:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.