AI-aided Traffic Control Scheme for M2M Communications in the Internet
of Vehicles
- URL: http://arxiv.org/abs/2204.03504v1
- Date: Sat, 5 Mar 2022 10:54:05 GMT
- Title: AI-aided Traffic Control Scheme for M2M Communications in the Internet
of Vehicles
- Authors: Haijun Zhang, Minghui Jiang, Xiangnan Liu, Keping Long, and Victor
C.M.Leung
- Abstract summary: The dynamics of traffic and the heterogeneous requirements of different IoV applications are not considered in most existing studies.
We consider a hybrid traffic control scheme and use proximal policy optimization (PPO) method to tackle it.
- Score: 61.21359293642559
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Due to the rapid growth of data transmissions in internet of vehicles (IoV),
finding schemes that can effectively alleviate access congestion has become an
important issue. Recently, many traffic control schemes have been studied.
Nevertheless, the dynamics of traffic and the heterogeneous requirements of
different IoV applications are not considered in most existing studies, which
is significant for the random access resource allocation. In this paper, we
consider a hybrid traffic control scheme and use proximal policy optimization
(PPO) method to tackle it. Firstly, IoV devices are divided into various
classes based on delay characteristics. The target of maximizing the successful
transmission of packets with the success rate constraint is established. Then,
the optimization objective is transformed into a markov decision process (MDP)
model. Finally, the access class barring (ACB) factors are obtained based on
the PPO method to maximize the number of successful access devices. The
performance of the proposal algorithm in respect of successful events and delay
compared to existing schemes is verified by simulations.
Related papers
- Reinforcement Learning for Adaptive Traffic Signal Control: Turn-Based and Time-Based Approaches to Reduce Congestion [2.733700237741334]
This paper explores the use of Reinforcement Learning to enhance traffic signal operations at intersections.
We introduce two RL-based algorithms: a turn-based agent, which dynamically prioritizes traffic signals based on real-time queue lengths, and a time-based agent, which adjusts signal phase durations according to traffic conditions.
Simulation results demonstrate that both RL algorithms significantly outperform conventional traffic signal control systems.
arXiv Detail & Related papers (2024-08-28T12:35:56Z) - Generalized Multi-Objective Reinforcement Learning with Envelope Updates in URLLC-enabled Vehicular Networks [12.323383132739195]
We develop a novel multi-objective reinforcement learning framework to jointly optimize wireless network selection and autonomous driving policies.
The proposed framework is designed to maximize the traffic flow and minimize collisions by controlling the vehicle's motion dynamics.
The proposed policies enable autonomous vehicles to adopt safe driving behaviors with improved connectivity.
arXiv Detail & Related papers (2024-05-18T16:31:32Z) - A Holistic Framework Towards Vision-based Traffic Signal Control with
Microscopic Simulation [53.39174966020085]
Traffic signal control (TSC) is crucial for reducing traffic congestion that leads to smoother traffic flow, reduced idling time, and mitigated CO2 emissions.
In this study, we explore the computer vision approach for TSC that modulates on-road traffic flows through visual observation.
We introduce a holistic traffic simulation framework called TrafficDojo towards vision-based TSC and its benchmarking.
arXiv Detail & Related papers (2024-03-11T16:42:29Z) - Sparsity-Aware Intelligent Massive Random Access Control in Open RAN: A
Reinforcement Learning Based Approach [61.74489383629319]
Massive random access of devices in the emerging Open Radio Access Network (O-RAN) brings great challenge to the access control and management.
reinforcement-learning (RL)-assisted scheme of closed-loop access control is proposed to preserve sparsity of access requests.
Deep-RL-assisted SAUD is proposed to resolve highly complex environments with continuous and high-dimensional state and action spaces.
arXiv Detail & Related papers (2023-03-05T12:25:49Z) - Fair and Efficient Distributed Edge Learning with Hybrid Multipath TCP [62.81300791178381]
The bottleneck of distributed edge learning over wireless has shifted from computing to communication.
Existing TCP-based data networking schemes for DEL are application-agnostic and fail to deliver adjustments according to application layer requirements.
We develop a hybrid multipath TCP (MP TCP) by combining model-based and deep reinforcement learning (DRL) based MP TCP for DEL.
arXiv Detail & Related papers (2022-11-03T09:08:30Z) - Traffic Management of Autonomous Vehicles using Policy Based Deep
Reinforcement Learning and Intelligent Routing [0.26249027950824505]
We propose a DRL-based signal control system that adjusts traffic signals according to the current congestion situation on intersections.
To deal with the congestion on roads behind the intersection, we used re-routing technique to load balance the vehicles on road networks.
arXiv Detail & Related papers (2022-06-28T02:46:20Z) - A Learning-Based Fast Uplink Grant for Massive IoT via Support Vector
Machines and Long Short-Term Memory [8.864453148536057]
3IoT introduced the need to use fast uplink grant (FUG) allocation in order to reduce latency and increase reliability for smart internet-of-things (mMTC) applications.
We propose a novel FUG allocation based on support machine scheduler (SVM)
Second, LSTM architecture is used for traffic prediction and correction techniques to overcome prediction errors.
arXiv Detail & Related papers (2021-08-02T11:33:02Z) - A Deep Reinforcement Learning Approach for Traffic Signal Control
Optimization [14.455497228170646]
Inefficient traffic signal control methods may cause numerous problems, such as traffic congestion and waste of energy.
This paper first proposes a multi-agent deep deterministic policy gradient (MADDPG) method by extending the actor-critic policy gradient algorithms.
arXiv Detail & Related papers (2021-07-13T14:11:04Z) - Data-Driven Random Access Optimization in Multi-Cell IoT Networks with
NOMA [78.60275748518589]
Non-orthogonal multiple access (NOMA) is a key technology to enable massive machine type communications (mMTC) in 5G networks and beyond.
In this paper, NOMA is applied to improve the random access efficiency in high-density spatially-distributed multi-cell wireless IoT networks.
A novel formulation of random channel access management is proposed, in which the transmission probability of each IoT device is tuned to maximize the geometric mean of users' expected capacity.
arXiv Detail & Related papers (2021-01-02T15:21:08Z) - Reconfigurable Intelligent Surface Assisted Mobile Edge Computing with
Heterogeneous Learning Tasks [53.1636151439562]
Mobile edge computing (MEC) provides a natural platform for AI applications.
We present an infrastructure to perform machine learning tasks at an MEC with the assistance of a reconfigurable intelligent surface (RIS)
Specifically, we minimize the learning error of all participating users by jointly optimizing transmit power of mobile users, beamforming vectors of the base station, and the phase-shift matrix of the RIS.
arXiv Detail & Related papers (2020-12-25T07:08:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.