Transient Density-Induced Dipolar Interactions in a Thin Vapor Cell
- URL: http://arxiv.org/abs/2110.00437v3
- Date: Thu, 28 Apr 2022 15:03:07 GMT
- Title: Transient Density-Induced Dipolar Interactions in a Thin Vapor Cell
- Authors: Florian Christaller, Max M\"ausezahl, Felix Moumtsilis, Annika Belz,
Harald K\"ubler, Hadiseh Alaeian, Charles S. Adams, Robert L\"ow, Tilman Pfau
- Abstract summary: We exploit the effect of light-induced atomic desorption to produce high atomic densities in a rubidium vapor cell.
An intense off-resonant laser is pulsed for roughly one nanosecond on a micrometer-sized sapphire-coated cell.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We exploit the effect of light-induced atomic desorption to produce high
atomic densities ($n\gg k^3$) in a rubidium vapor cell. An intense off-resonant
laser is pulsed for roughly one nanosecond on a micrometer-sized
sapphire-coated cell, which results in the desorption of atomic clouds from
both internal surfaces. We probe the transient atomic density evolution by
time-resolved absorption spectroscopy.With a temporal resolution of
$\approx1\,\mathrm{ns}$, we measure the broadening and line shift of the atomic
resonances. Both broadening and line shift are attributed to dipole-dipole
interactions. This fast switching of the atomic density and dipolar
interactions could be the basis for future quantum devices based on the
excitation blockade.
Related papers
- Self-Ordering, Cooling and Lasing in an Ensemble of Clock Atoms [0.0]
Active atomic clocks are predicted to provide better short-term stability and robustness against thermal fluctuations than typical feedback-based optical atomic clocks.
We study spatial self-organization in a transversely driven ensemble of clock atoms inside an optical resonator and coherent light emission from the cavity.
arXiv Detail & Related papers (2024-07-22T20:54:03Z) - Dicke superradiance in ordered arrays of multilevel atoms [0.0]
In inverted atomic ensembles, photon-mediated interactions give rise to Dicke superradiance, a form of many-body decay.
Here, we investigate Dicke superradiance in a realistic experimental setting using ordered arrays of alkaline-earth(-like) atoms.
Our work represents an important step in harnessing alkaline-earth atoms as quantum optical sources.
arXiv Detail & Related papers (2023-03-31T19:33:35Z) - Asymmetric comb waveguide for strong interactions between atoms and
light [0.0]
We show that cold Rubidium atoms can be trapped as close as 100 nm from the structure in a 1.3-mK-deep potential well.
For atoms trapped at this position, the emission into guided photons is largely favored, with a beta factor as high as 0.88 and a radiative decay rate into the slow mode 10 times larger than the free-space decay rate.
arXiv Detail & Related papers (2022-01-07T15:50:18Z) - Relativistic aspects of orbital and magnetic anisotropies in the
chemical bonding and structure of lanthanide molecules [60.17174832243075]
We study the electronic and ro-vibrational states of heavy homonuclear lanthanide Er2 and Tm2 molecules by applying state-of-the-art relativistic methods.
We were able to obtain reliable spin-orbit and correlation-induced splittings between the 91 Er2 and 36 Tm2 electronic potentials dissociating to two ground-state atoms.
arXiv Detail & Related papers (2021-07-06T15:34:00Z) - Gravitational Redshift Tests with Atomic Clocks and Atom Interferometers [55.4934126700962]
We characterize how the sensitivity to gravitational redshift violations arises in atomic clocks and atom interferometers.
We show that contributions beyond linear order to trapping potentials lead to such a sensitivity of trapped atomic clocks.
Guided atom interferometers are comparable to atomic clocks.
arXiv Detail & Related papers (2021-04-29T15:07:40Z) - Site-dependent selection of atoms for homogeneous atom-cavity coupling [0.0]
We select atoms by imposing an AC Stark shift on the ground state hyperfine microwave transition frequency with light injected into the cavity.
We induce a spin flip with microwaves that are resonant for atoms that are near maximally coupled to the cavity mode of interest, after which, we use radiation pressure forces to remove from the cavity all the atoms in the initial spin state.
arXiv Detail & Related papers (2021-04-02T19:05:19Z) - Multimode-polariton superradiance via Floquet engineering [55.41644538483948]
We consider an ensemble of ultracold bosonic atoms within a near-planar cavity, driven by a far detuned laser.
We show that a strong, dispersive atom-photon coupling can be reached for many transverse cavity modes at once.
The resulting Floquet polaritons involve a superposition of a set of cavity modes with a density of excitation of the atomic cloud.
arXiv Detail & Related papers (2020-11-24T19:00:04Z) - Collective spontaneous emission of two entangled atoms near an
oscillating mirror [50.591267188664666]
We consider the cooperative spontaneous emission of a system of two identical atoms, interacting with the electromagnetic field in the vacuum state.
Using time-dependent theory, we investigate the spectrum of the radiation emitted by the two-atom system.
We show that it is modulated in time, and that the presence of the oscillating mirror can enhance or inhibit the decay rate.
arXiv Detail & Related papers (2020-10-07T06:48:20Z) - Collective emission of photons from dense, dipole-dipole interacting
atomic ensembles [0.0]
We study the collective radiation properties of cold, trapped ensembles of atoms.
We find that the emission rate of a photon from an excited atomic ensemble is strongly enhanced for an elongated cloud.
arXiv Detail & Related papers (2020-09-18T06:44:02Z) - Electrically tuned hyperfine spectrum in neutral
Tb(II)(Cp$^{\rm{iPr5}}$)$_2$ single-molecule magnet [64.10537606150362]
Both molecular electronic and nuclear spin levels can be used as qubits.
In solid state systems with dopants, an electric field was shown to effectively change the spacing between the nuclear spin qubit levels.
This hyperfine Stark effect may be useful for applications of molecular nuclear spins for quantum computing.
arXiv Detail & Related papers (2020-07-31T01:48:57Z) - Maximum refractive index of an atomic medium [58.720142291102135]
All optical materials with a positive refractive index have a value of index that is of order unity.
Despite the giant response of an isolated atom, we find that the maximum index does not indefinitely grow with increasing density.
We propose an explanation based upon strong-disorder renormalization group theory.
arXiv Detail & Related papers (2020-06-02T14:57:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.