論文の概要: Sparse Deep Learning: A New Framework Immune to Local Traps and
Miscalibration
- arxiv url: http://arxiv.org/abs/2110.00653v1
- Date: Fri, 1 Oct 2021 21:16:34 GMT
- ステータス: 処理完了
- システム内更新日: 2021-10-05 15:49:35.456274
- Title: Sparse Deep Learning: A New Framework Immune to Local Traps and
Miscalibration
- Title(参考訳): スパースディープラーニング: ローカルトラップとミスキャリブレーションの影響を受けない新しいフレームワーク
- Authors: Yan Sun, Wenjun Xiong, Faming Liang
- Abstract要約: 我々は、上記の問題を一貫性のある方法で解決する、疎いディープラーニングのための新しいフレームワークを提供する。
我々はスパース深層学習の理論的基礎を築き,スパースニューラルネットワークの学習に先立つアニールアルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 12.05471394131891
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learning has powered recent successes of artificial intelligence (AI).
However, the deep neural network, as the basic model of deep learning, has
suffered from issues such as local traps and miscalibration. In this paper, we
provide a new framework for sparse deep learning, which has the above issues
addressed in a coherent way. In particular, we lay down a theoretical
foundation for sparse deep learning and propose prior annealing algorithms for
learning sparse neural networks. The former has successfully tamed the sparse
deep neural network into the framework of statistical modeling, enabling
prediction uncertainty correctly quantified. The latter can be asymptotically
guaranteed to converge to the global optimum, enabling the validity of the
down-stream statistical inference. Numerical result indicates the superiority
of the proposed method compared to the existing ones.
- Abstract(参考訳): ディープラーニングは最近の人工知能(AI)の成功を支えている。
しかし、ディープラーニングの基本モデルであるディープニューラルネットワークは、ローカルトラップやミスカバリといった問題に苦しめられている。
本稿では,上記の問題に対してコヒーレントな方法で対処した,スパース深層学習のための新しいフレームワークを提案する。
特に,スパース深層学習のための理論的基礎を定め,スパースニューラルネットワークを学習するための事前アニーリングアルゴリズムを提案する。
前者はスパースディープニューラルネットワークを統計的モデリングの枠組みに適合させ、予測の不確かさを正確に定量化することに成功した。
後者は漸近的にグローバル最適に収束することが保証され、ダウンストリーム統計推論の有効性が保証される。
数値結果は,提案手法が既存手法と比較して優れていることを示す。
関連論文リスト
- SGD method for entropy error function with smoothing l0 regularization for neural networks [3.108634881604788]
エントロピー誤差関数はニューラルネットワークで広く使われている。
本稿では,フィードフォワードニューラルネットワークの規則化を円滑に行うエントロピー関数を提案する。
ニューラルネットワークを効果的に学習し、より正確な予測を可能にするため、私たちの仕事は新しくなっています。
論文 参考訳(メタデータ) (2024-05-28T19:54:26Z) - The Boundaries of Verifiable Accuracy, Robustness, and Generalisation in Deep Learning [71.14237199051276]
経験的リスクを最小限に抑えるため,古典的な分布に依存しないフレームワークとアルゴリズムを検討する。
理想的な安定かつ正確なニューラルネットワークの計算と検証が極めて難しいタスク群が存在することを示す。
論文 参考訳(メタデータ) (2023-09-13T16:33:27Z) - Addressing caveats of neural persistence with deep graph persistence [54.424983583720675]
神経の持続性に影響を与える主な要因は,ネットワークの重みのばらつきと大きな重みの空間集中である。
単一層ではなく,ニューラルネットワーク全体へのニューラルネットワークの持続性に基づくフィルタリングの拡張を提案する。
これにより、ネットワーク内の永続的なパスを暗黙的に取り込み、分散に関連する問題を緩和するディープグラフの永続性測定が得られます。
論文 参考訳(メタデータ) (2023-07-20T13:34:11Z) - The Cascaded Forward Algorithm for Neural Network Training [61.06444586991505]
本稿では,ニューラルネットワークのための新しい学習フレームワークであるCascaded Forward(CaFo)アルゴリズムを提案する。
FFとは異なり、我々のフレームワークは各カスケードブロックのラベル分布を直接出力する。
我々のフレームワークでは、各ブロックは独立して訓練できるので、並列加速度システムに容易に展開できる。
論文 参考訳(メタデータ) (2023-03-17T02:01:11Z) - Generalized Uncertainty of Deep Neural Networks: Taxonomy and
Applications [1.9671123873378717]
ディープニューラルネットワークの不確実性は、解釈可能性と透明性の感覚において重要であるだけでなく、パフォーマンスをさらに向上するためにも重要であることを示す。
我々は、ディープニューラルネットワークの不確実性の定義を、入力またはインプットラベルペアに関連する任意の数またはベクトルに一般化し、そのような不確かさをディープモデルから「マイニングに関する既存の方法」をカタログ化する。
論文 参考訳(メタデータ) (2023-02-02T22:02:33Z) - Scalable computation of prediction intervals for neural networks via
matrix sketching [79.44177623781043]
既存の不確実性推定アルゴリズムでは、モデルアーキテクチャとトレーニング手順を変更する必要がある。
本研究では、与えられたトレーニングされたニューラルネットワークに適用し、近似予測間隔を生成できる新しいアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-05-06T13:18:31Z) - A Kernel-Expanded Stochastic Neural Network [10.837308632004644]
ディープニューラルネットワークは、トレーニングにおいて、しばしばローカルな最小限に閉じ込められる。
新しいカーネル拡張ニューラルネットワーク(K-StoNet)モデルは、潜在変数モデルとしてネットワークを再構成する。
モデルは命令正規化最適化(IRO)アルゴリズムを用いて容易に訓練することができる。
論文 参考訳(メタデータ) (2022-01-14T06:42:42Z) - Analytically Tractable Inference in Deep Neural Networks [0.0]
Tractable Approximate Inference (TAGI)アルゴリズムは、浅いフルコネクテッドニューラルネットワークのバックプロパゲーションに対する実行可能でスケーラブルな代替手段であることが示された。
従来のディープニューラルネットワークアーキテクチャをトレーニングするために、TAGIがバックプロパゲーションのパフォーマンスとどのように一致するか、または上回るかを実証しています。
論文 参考訳(メタデータ) (2021-03-09T14:51:34Z) - Rectified Linear Postsynaptic Potential Function for Backpropagation in
Deep Spiking Neural Networks [55.0627904986664]
スパイキングニューラルネットワーク(SNN)は、時間的スパイクパターンを用いて情報を表現し、伝達する。
本稿では,情報符号化,シナプス可塑性,意思決定におけるスパイクタイミングダイナミクスの寄与について検討し,将来のDeepSNNやニューロモルフィックハードウェアシステムの設計への新たな視点を提供する。
論文 参考訳(メタデータ) (2020-03-26T11:13:07Z) - MSE-Optimal Neural Network Initialization via Layer Fusion [68.72356718879428]
ディープニューラルネットワークは、さまざまな分類と推論タスクに対して最先端のパフォーマンスを達成する。
グラデーションと非進化性の組み合わせは、学習を新しい問題の影響を受けやすいものにする。
確率変数を用いて学習した深層ネットワークの近傍層を融合する手法を提案する。
論文 参考訳(メタデータ) (2020-01-28T18:25:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。