Random Subgraph Detection Using Queries
- URL: http://arxiv.org/abs/2110.00744v5
- Date: Fri, 3 May 2024 06:15:48 GMT
- Title: Random Subgraph Detection Using Queries
- Authors: Wasim Huleihel, Arya Mazumdar, Soumyabrata Pal,
- Abstract summary: The planted densest subgraph detection problem refers to the task of testing whether in a given (random) graph there is a subgraph that is unusually dense.
In this paper, we consider a natural variant of the above problem, where one can only observe a relatively small part of the graph using adaptive edge queries.
For this model, we determine the number of queries necessary and sufficient (accompanied with a quasi-polynomial optimal algorithm) for detecting the presence of the planted subgraph.
- Score: 29.192695995340653
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The planted densest subgraph detection problem refers to the task of testing whether in a given (random) graph there is a subgraph that is unusually dense. Specifically, we observe an undirected and unweighted graph on $n$ vertices. Under the null hypothesis, the graph is a realization of an Erd\H{o}s-R\'{e}nyi graph with edge probability (or, density) $q$. Under the alternative, there is a subgraph on $k$ vertices with edge probability $p>q$. The statistical as well as the computational barriers of this problem are well-understood for a wide range of the edge parameters $p$ and $q$. In this paper, we consider a natural variant of the above problem, where one can only observe a relatively small part of the graph using adaptive edge queries. For this model, we determine the number of queries necessary and sufficient (accompanied with a quasi-polynomial optimal algorithm) for detecting the presence of the planted subgraph. We also propose a polynomial-time algorithm which is able to detect the planted subgraph, albeit with more queries compared to the above lower bound. We conjecture that in the leftover regime, no polynomial-time algorithms exist. Our results resolve two open questions posed in the past literature.
Related papers
- Detection of Dense Subhypergraphs by Low-Degree Polynomials [72.4451045270967]
Detection of a planted dense subgraph in a random graph is a fundamental statistical and computational problem.
We consider detecting the presence of a planted $Gr(ngamma, n-alpha)$ subhypergraph in a $Gr(n, n-beta) hypergraph.
Our results are already new in the graph case $r=2$, as we consider the subtle log-density regime where hardness based on average-case reductions is not known.
arXiv Detail & Related papers (2023-04-17T10:38:08Z) - On the Unlikelihood of D-Separation [69.62839677485087]
We provide analytic evidence that on large graphs, d-separation is a rare phenomenon, even when guaranteed to exist.
For the PC Algorithm, while it is known that its worst-case guarantees fail on non-sparse graphs, we show that the same is true for the average case.
For UniformSGS, while it is known that the running time is exponential for existing edges, we show that in the average case, that is the expected running time for most non-existing edges as well.
arXiv Detail & Related papers (2023-03-10T00:11:18Z) - Planted Bipartite Graph Detection [13.95780443241133]
We consider the task of detecting a hidden bipartite subgraph in a given random graph.
Under the null hypothesis, the graph is a realization of an ErdHosR'enyi random graph over $n$ with edge density $q$.
Under the alternative, there exists a planted $k_mathsfR times k_mathsfL$ bipartite subgraph with edge density $p>q$.
arXiv Detail & Related papers (2023-02-07T18:18:17Z) - Improved High-Probability Regret for Adversarial Bandits with
Time-Varying Feedback Graphs [62.52390282012508]
We study high-probability regret bounds for adversarial $K$-armed bandits with time-varying feedback graphs over $T$ rounds.
We develop an algorithm that achieves the optimal regret $widetildemathcalO((sum_t=1Talpha_t)1/2+max_tin[T]alpha_t]$ with high probability.
We also develop the first algorithm that achieves the optimal high-probability regret bound for weakly observable graphs.
arXiv Detail & Related papers (2022-10-04T04:36:15Z) - Planted Dense Subgraphs in Dense Random Graphs Can Be Recovered using
Graph-based Machine Learning [1.52292571922932]
We present PYGON, a graph neural network-based algorithm, which is insensitive to the structure of the planted subgraph.
We show that PYGON can recover cliques of sizes $Thetaleft(sqrtnright)$, where $n$ is the size of the background graph.
We also show that the same algorithm can recover multiple other planted subgraphs of size $Thetaleft(sqrtnright)$, in both directed and undirected.
arXiv Detail & Related papers (2022-01-05T21:11:23Z) - Fast Graph Sampling for Short Video Summarization using Gershgorin Disc
Alignment [52.577757919003844]
We study the problem of efficiently summarizing a short video into several paragraphs, leveraging recent progress in fast graph sampling.
Experimental results show that our algorithm achieves comparable video summarization as state-of-the-art methods, at a substantially reduced complexity.
arXiv Detail & Related papers (2021-10-21T18:43:00Z) - Inferring Hidden Structures in Random Graphs [13.031167737538881]
We study the two inference problems of detecting and recovering an isolated community of emphgeneral structure planted in a random graph.
We derive lower bounds for detecting/recovering the structure $Gamma_k$ in terms of the parameters $(n,k,q)$, as well as certain properties of $Gamma_k$, and exhibit computationally optimal algorithms that achieve these lower bounds.
arXiv Detail & Related papers (2021-10-05T09:39:51Z) - Learning Sparse Graph with Minimax Concave Penalty under Gaussian Markov
Random Fields [51.07460861448716]
This paper presents a convex-analytic framework to learn from data.
We show that a triangular convexity decomposition is guaranteed by a transform of the corresponding to its upper part.
arXiv Detail & Related papers (2021-09-17T17:46:12Z) - The Generalized Mean Densest Subgraph Problem [30.33731479053404]
We introduce a new family of dense subgraph objectives, parameterized by a single parameter $p$.
Our objective captures both the standard densest subgraph problem and the maximum $k$-core as special cases.
A major contribution of our work is analyzing the performance of different types of peeling algorithms for dense subgraphs both in theory and practice.
arXiv Detail & Related papers (2021-06-02T02:58:35Z) - Online Dense Subgraph Discovery via Blurred-Graph Feedback [87.9850024070244]
We introduce a novel learning problem for dense subgraph discovery.
We first propose a edge-time algorithm that obtains a nearly-optimal solution with high probability.
We then design a more scalable algorithm with a theoretical guarantee.
arXiv Detail & Related papers (2020-06-24T11:37:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.