Inferring Hidden Structures in Random Graphs
- URL: http://arxiv.org/abs/2110.01901v1
- Date: Tue, 5 Oct 2021 09:39:51 GMT
- Title: Inferring Hidden Structures in Random Graphs
- Authors: Wasim Huleihel
- Abstract summary: We study the two inference problems of detecting and recovering an isolated community of emphgeneral structure planted in a random graph.
We derive lower bounds for detecting/recovering the structure $Gamma_k$ in terms of the parameters $(n,k,q)$, as well as certain properties of $Gamma_k$, and exhibit computationally optimal algorithms that achieve these lower bounds.
- Score: 13.031167737538881
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study the two inference problems of detecting and recovering an isolated
community of \emph{general} structure planted in a random graph. The detection
problem is formalized as a hypothesis testing problem, where under the null
hypothesis, the graph is a realization of an Erd\H{o}s-R\'{e}nyi random graph
$\mathcal{G}(n,q)$ with edge density $q\in(0,1)$; under the alternative, there
is an unknown structure $\Gamma_k$ on $k$ nodes, planted in $\mathcal{G}(n,q)$,
such that it appears as an \emph{induced subgraph}. In case of a successful
detection, we are concerned with the task of recovering the corresponding
structure. For these problems, we investigate the fundamental limits from both
the statistical and computational perspectives. Specifically, we derive lower
bounds for detecting/recovering the structure $\Gamma_k$ in terms of the
parameters $(n,k,q)$, as well as certain properties of $\Gamma_k$, and exhibit
computationally unbounded optimal algorithms that achieve these lower bounds.
We also consider the problem of testing in polynomial-time. As is customary in
many similar structured high-dimensional problems, our model undergoes an
"easy-hard-impossible" phase transition and computational constraints can
severely penalize the statistical performance. To provide an evidence for this
phenomenon, we show that the class of low-degree polynomials algorithms match
the statistical performance of the polynomial-time algorithms we develop.
Related papers
- A computational transition for detecting correlated stochastic block models by low-degree polynomials [13.396246336911842]
Detection of correlation in a pair of random graphs is a fundamental statistical and computational problem that has been extensively studied in recent years.
We consider a pair of correlated block models $mathcalS(n,tfraclambdan;k,epsilon;s)$ that are subsampled from a common parent block model $mathcal S(n,tfraclambdan;k,epsilon;s)$
We focus on tests based on emphlow-degrees of the entries of the adjacency
arXiv Detail & Related papers (2024-09-02T06:14:05Z) - Detection of Dense Subhypergraphs by Low-Degree Polynomials [72.4451045270967]
Detection of a planted dense subgraph in a random graph is a fundamental statistical and computational problem.
We consider detecting the presence of a planted $Gr(ngamma, n-alpha)$ subhypergraph in a $Gr(n, n-beta) hypergraph.
Our results are already new in the graph case $r=2$, as we consider the subtle log-density regime where hardness based on average-case reductions is not known.
arXiv Detail & Related papers (2023-04-17T10:38:08Z) - On the Unlikelihood of D-Separation [69.62839677485087]
We provide analytic evidence that on large graphs, d-separation is a rare phenomenon, even when guaranteed to exist.
For the PC Algorithm, while it is known that its worst-case guarantees fail on non-sparse graphs, we show that the same is true for the average case.
For UniformSGS, while it is known that the running time is exponential for existing edges, we show that in the average case, that is the expected running time for most non-existing edges as well.
arXiv Detail & Related papers (2023-03-10T00:11:18Z) - Detection-Recovery Gap for Planted Dense Cycles [72.4451045270967]
We consider a model where a dense cycle with expected bandwidth $n tau$ and edge density $p$ is planted in an ErdHos-R'enyi graph $G(n,q)$.
We characterize the computational thresholds for the associated detection and recovery problems for the class of low-degree algorithms.
arXiv Detail & Related papers (2023-02-13T22:51:07Z) - Planted Bipartite Graph Detection [13.95780443241133]
We consider the task of detecting a hidden bipartite subgraph in a given random graph.
Under the null hypothesis, the graph is a realization of an ErdHosR'enyi random graph over $n$ with edge density $q$.
Under the alternative, there exists a planted $k_mathsfR times k_mathsfL$ bipartite subgraph with edge density $p>q$.
arXiv Detail & Related papers (2023-02-07T18:18:17Z) - Statistical limits of correlation detection in trees [0.7826806223782055]
This paper addresses the problem of testing whether two observed trees $(t,t')$ are sampled independently or from a joint distribution under which they are correlated.
Motivated by graph alignment, we investigate the conditions of existence of one-sided tests.
We find that no such test exists for $s leq sqrtalpha$, and that such a test exists whenever $s > sqrtalpha$, for $lambda$ large enough.
arXiv Detail & Related papers (2022-09-27T22:26:53Z) - Causal Bandits for Linear Structural Equation Models [58.2875460517691]
This paper studies the problem of designing an optimal sequence of interventions in a causal graphical model.
It is assumed that the graph's structure is known and has $N$ nodes.
Two algorithms are proposed for the frequentist (UCB-based) and Bayesian settings.
arXiv Detail & Related papers (2022-08-26T16:21:31Z) - Random Subgraph Detection Using Queries [29.192695995340653]
The planted densest subgraph detection problem refers to the task of testing whether in a given (random) graph there is a subgraph that is unusually dense.
In this paper, we consider a natural variant of the above problem, where one can only observe a relatively small part of the graph using adaptive edge queries.
For this model, we determine the number of queries necessary and sufficient (accompanied with a quasi-polynomial optimal algorithm) for detecting the presence of the planted subgraph.
arXiv Detail & Related papers (2021-10-02T07:41:17Z) - Small Covers for Near-Zero Sets of Polynomials and Learning Latent
Variable Models [56.98280399449707]
We show that there exists an $epsilon$-cover for $S$ of cardinality $M = (k/epsilon)O_d(k1/d)$.
Building on our structural result, we obtain significantly improved learning algorithms for several fundamental high-dimensional probabilistic models hidden variables.
arXiv Detail & Related papers (2020-12-14T18:14:08Z) - Locally Private Hypothesis Selection [96.06118559817057]
We output a distribution from $mathcalQ$ whose total variation distance to $p$ is comparable to the best such distribution.
We show that the constraint of local differential privacy incurs an exponential increase in cost.
Our algorithms result in exponential improvements on the round complexity of previous methods.
arXiv Detail & Related papers (2020-02-21T18:30:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.