論文の概要: Partner-Aware Algorithms in Decentralized Cooperative Bandit Teams
- arxiv url: http://arxiv.org/abs/2110.00751v1
- Date: Sat, 2 Oct 2021 08:17:30 GMT
- ステータス: 処理完了
- システム内更新日: 2021-10-05 15:56:05.877414
- Title: Partner-Aware Algorithms in Decentralized Cooperative Bandit Teams
- Title(参考訳): 分散協調バンディットチームにおけるパートナーアウェアアルゴリズム
- Authors: Erdem B{\i}y{\i}k, Anusha Lalitha, Rajarshi Saha, Andrea Goldsmith,
Dorsa Sadigh
- Abstract要約: 我々は、より一般的なマルチエージェントコラボレーションの抽象化として、複合報酬を用いた分散マルチエージェント帯域(MAB)問題を提案し、解析する。
本稿では,よく知られた単一エージェント・アッパー信頼境界アルゴリズムを拡張した逐次意思決定のためのパートナー・アウェア戦略を提案する。
提案したパートナー意識戦略は、他の既知の手法よりも優れており、人間による研究は、パートナー意識戦略を実装するAIエージェントと協力することを好むことを示唆している。
- 参考スコア(独自算出の注目度): 14.215359943041369
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: When humans collaborate with each other, they often make decisions by
observing others and considering the consequences that their actions may have
on the entire team, instead of greedily doing what is best for just themselves.
We would like our AI agents to effectively collaborate in a similar way by
capturing a model of their partners. In this work, we propose and analyze a
decentralized Multi-Armed Bandit (MAB) problem with coupled rewards as an
abstraction of more general multi-agent collaboration. We demonstrate that
na\"ive extensions of single-agent optimal MAB algorithms fail when applied for
decentralized bandit teams. Instead, we propose a Partner-Aware strategy for
joint sequential decision-making that extends the well-known single-agent Upper
Confidence Bound algorithm. We analytically show that our proposed strategy
achieves logarithmic regret, and provide extensive experiments involving
human-AI and human-robot collaboration to validate our theoretical findings.
Our results show that the proposed partner-aware strategy outperforms other
known methods, and our human subject studies suggest humans prefer to
collaborate with AI agents implementing our partner-aware strategy.
- Abstract(参考訳): 人間が互いに協力し合うとき、彼らはしばしば他人を観察し、自分の行動がチーム全体に与えた影響を考慮し、自分のために最善を尽くすのではなく、決定を下す。
私たちは、AIエージェントがパートナーのモデルをキャプチャすることで、同様の方法で効果的に協力することを望んでいます。
本研究では,より汎用的なマルチエージェントコラボレーションの抽象化として,複合報酬を用いた分散マルチエージェント帯域(MAB)問題を提案し,解析する。
単一エージェント最適mabアルゴリズムのna\"ive拡張が分散バンディットチームに適用されると失敗することを実証する。
代わりに、よく知られた単一エージェントアッパー信頼境界アルゴリズムを拡張した逐次意思決定のためのパートナー・アウェア戦略を提案する。
我々は,提案手法が対数的後悔を達成し,人間-AIと人間-ロボットの協調を含む広範な実験を行い,理論的な知見を検証した。
提案したパートナー意識戦略は、他の既知の手法よりも優れており、人間による研究は、パートナー意識戦略を実装するAIエージェントと協力することを好むことを示唆している。
関連論文リスト
- ProAgent: Building Proactive Cooperative Agents with Large Language
Models [89.53040828210945]
ProAgentは、大規模な言語モデルを利用してプロアクティブエージェントを生成する新しいフレームワークである。
ProAgentは現状を分析し、チームメイトの意図を観察から推測することができる。
ProAgentは高度なモジュール化と解釈可能性を示し、様々な調整シナリオに容易に統合できる。
論文 参考訳(メタデータ) (2023-08-22T10:36:56Z) - Tackling Cooperative Incompatibility for Zero-Shot Human-AI Coordination [36.33334853998621]
協調的オープンエンド・ラーニング(COLE)フレームワークを導入し,学習における協調的非互換性を解決する。
COLEは、グラフ理論の観点を用いて、2人のプレイヤーと協調ゲームにおけるオープンエンド目標を定式化し、各戦略の協調能力を評価し、特定する。
我々は,COLEが理論的および経験的分析から協調的不整合性を効果的に克服できることを示した。
論文 参考訳(メタデータ) (2023-06-05T16:51:38Z) - A Reinforcement Learning-assisted Genetic Programming Algorithm for Team
Formation Problem Considering Person-Job Matching [70.28786574064694]
解の質を高めるために強化学習支援遺伝的プログラミングアルゴリズム(RL-GP)を提案する。
効率的な学習を通じて得られる超ヒューリスティックなルールは、プロジェクトチームを形成する際の意思決定支援として利用することができる。
論文 参考訳(メタデータ) (2023-04-08T14:32:12Z) - PECAN: Leveraging Policy Ensemble for Context-Aware Zero-Shot Human-AI
Coordination [52.991211077362586]
本研究では,集団におけるパートナーの多様性を高めるための政策アンサンブル手法を提案する。
そこで我々は,egoエージェントがパートナーの潜在的ポリシープリミティブを分析し,識別するためのコンテキスト認識手法を開発した。
このようにして、エゴエージェントは多様なパートナーとの共同作業において、より普遍的な協調行動を学ぶことができる。
論文 参考訳(メタデータ) (2023-01-16T12:14:58Z) - Multi-agent Deep Covering Skill Discovery [50.812414209206054]
本稿では,複数エージェントの結合状態空間の予測被覆時間を最小化し,マルチエージェントオプションを構築するマルチエージェントDeep Covering Option Discoveryを提案する。
また、MARLプロセスにマルチエージェントオプションを採用するための新しいフレームワークを提案する。
提案アルゴリズムは,アテンション機構とエージェントの相互作用を効果的に把握し,マルチエージェントオプションの同定に成功した。
論文 参考訳(メタデータ) (2022-10-07T00:40:59Z) - Communication-Efficient Collaborative Best Arm Identification [6.861971769602314]
エージェントが協調して目的関数を学習するマルチエージェント学習モデルにおいて,バンドイット理論の基本的な問題であるトップ・m$腕識別について検討する。
私たちは、最大限のスピードアップを達成するための協調学習アルゴリズムの設計に興味を持っています。
論文 参考訳(メタデータ) (2022-08-18T19:02:29Z) - Any-Play: An Intrinsic Augmentation for Zero-Shot Coordination [0.4153433779716327]
我々は、協調型AIを評価するための代替基準を定式化し、この基準を「アルゴリズム間クロスプレイ(inter-algorithm cross-play)」と呼ぶ。
このパラダイムでは,Other-Play や Off-Belief Learning といった,最先端の協調型AIアルゴリズムが低性能であることを示す。
本稿では,Any-Play学習のアルゴリズムをアルゴリズム間クロスプレイ設定に一般化するために,Any-Play学習の拡張を提案する。
論文 参考訳(メタデータ) (2022-01-28T21:43:58Z) - Conditional Imitation Learning for Multi-Agent Games [89.897635970366]
本研究では,条件付きマルチエージェント模倣学習の課題について考察する。
本稿では,スケーラビリティとデータ不足の難しさに対処する新しい手法を提案する。
我々のモデルは,egoやパートナエージェント戦略よりも低ランクなサブスペースを学習し,サブスペースに補間することで,新たなパートナ戦略を推論し,適応する。
論文 参考訳(メタデータ) (2022-01-05T04:40:13Z) - Emergence of Theory of Mind Collaboration in Multiagent Systems [65.97255691640561]
ToMとエージェント間の効果的な協調を開発するための適応的学習アルゴリズムを提案する。
アルゴリズムはToMをモデル化せずに従来の分散実行アルゴリズムを全て上回る2つのゲームで評価する。
論文 参考訳(メタデータ) (2021-09-30T23:28:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。