Interactive Segmentation for COVID-19 Infection Quantification on
Longitudinal CT scans
- URL: http://arxiv.org/abs/2110.00948v2
- Date: Thu, 1 Jun 2023 08:55:54 GMT
- Title: Interactive Segmentation for COVID-19 Infection Quantification on
Longitudinal CT scans
- Authors: Michelle Xiao-Lin Foo, Seong Tae Kim, Magdalini Paschali, Leili Goli,
Egon Burian, Marcus Makowski, Rickmer Braren, Nassir Navab, Thomas Wendler
- Abstract summary: Consistent segmentation of COVID-19 patient's CT scans across multiple time points is essential to assess disease progression and response to therapy accurately.
Existing automatic and interactive segmentation models for medical images only use data from a single time point (static)
We propose a new single network model for interactive segmentation that fully utilizes all available past information to refine the segmentation of follow-up scans.
- Score: 40.721386089781895
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Consistent segmentation of COVID-19 patient's CT scans across multiple time
points is essential to assess disease progression and response to therapy
accurately. Existing automatic and interactive segmentation models for medical
images only use data from a single time point (static). However, valuable
segmentation information from previous time points is often not used to aid the
segmentation of a patient's follow-up scans. Also, fully automatic segmentation
techniques frequently produce results that would need further editing for
clinical use. In this work, we propose a new single network model for
interactive segmentation that fully utilizes all available past information to
refine the segmentation of follow-up scans. In the first segmentation round,
our model takes 3D volumes of medical images from two-time points (target and
reference) as concatenated slices with the additional reference time point
segmentation as a guide to segment the target scan. In subsequent segmentation
refinement rounds, user feedback in the form of scribbles that correct the
segmentation and the target's previous segmentation results are additionally
fed into the model. This ensures that the segmentation information from
previous refinement rounds is retained. Experimental results on our in-house
multiclass longitudinal COVID-19 dataset show that the proposed model
outperforms its static version and can assist in localizing COVID-19 infections
in patient's follow-up scans.
Related papers
- Longitudinal Segmentation of MS Lesions via Temporal Difference Weighting [2.0168790328644697]
We introduce a novel approach that explicitly incorporates temporal differences between baseline and follow-up scans through a unique architectural inductive bias called Difference Weighting Block.
We achieve superior scores in lesion segmentation as well as lesion detection as compared to state-of-the-art longitudinal and single timepoint models across two datasets.
arXiv Detail & Related papers (2024-09-20T11:30:54Z) - TotalSegmentator MRI: Sequence-Independent Segmentation of 59 Anatomical Structures in MR images [62.53931644063323]
In this study we extended the capabilities of TotalSegmentator to MR images.
We trained an nnU-Net segmentation algorithm on this dataset and calculated similarity coefficients (Dice) to evaluate the model's performance.
The model significantly outperformed two other publicly available segmentation models (Dice score 0.824 versus 0.762; p0.001 and 0.762 versus 0.542; p)
arXiv Detail & Related papers (2024-05-29T20:15:54Z) - Extraction of volumetric indices from echocardiography: which deep
learning solution for clinical use? [6.144041824426555]
We show that the proposed 3D nnU-Net outperforms alternative 2D and recurrent segmentation methods.
Overall, the experimental results suggest that with sufficient training data, 3D nnU-Net could become the first automated tool to meet the standards of an everyday clinical device.
arXiv Detail & Related papers (2023-05-03T09:38:52Z) - Self-Supervised Correction Learning for Semi-Supervised Biomedical Image
Segmentation [84.58210297703714]
We propose a self-supervised correction learning paradigm for semi-supervised biomedical image segmentation.
We design a dual-task network, including a shared encoder and two independent decoders for segmentation and lesion region inpainting.
Experiments on three medical image segmentation datasets for different tasks demonstrate the outstanding performance of our method.
arXiv Detail & Related papers (2023-01-12T08:19:46Z) - Reliable Joint Segmentation of Retinal Edema Lesions in OCT Images [55.83984261827332]
In this paper, we propose a novel reliable multi-scale wavelet-enhanced transformer network.
We develop a novel segmentation backbone that integrates a wavelet-enhanced feature extractor network and a multi-scale transformer module.
Our proposed method achieves better segmentation accuracy with a high degree of reliability as compared to other state-of-the-art segmentation approaches.
arXiv Detail & Related papers (2022-12-01T07:32:56Z) - Two-Stream Graph Convolutional Network for Intra-oral Scanner Image
Segmentation [133.02190910009384]
We propose a two-stream graph convolutional network (i.e., TSGCN) to handle inter-view confusion between different raw attributes.
Our TSGCN significantly outperforms state-of-the-art methods in 3D tooth (surface) segmentation.
arXiv Detail & Related papers (2022-04-19T10:41:09Z) - Rapid model transfer for medical image segmentation via iterative
human-in-the-loop update: from labelled public to unlabelled clinical
datasets for multi-organ segmentation in CT [22.411929051477912]
This paper presents a novel and generic human-in-the-loop scheme for efficiently transferring a segmentation model from a small-scale labelled dataset to a larger-scale unlabelled dataset for multi-organ segmentation in CT.
The results show that our scheme can not only improve the performance by 19.7% on Dice, but also expedite the cost time of manual labelling from 13.87 min to 1.51 min per CT volume during the model transfer, demonstrating the clinical usefulness with promising potentials.
arXiv Detail & Related papers (2022-04-13T08:22:42Z) - Quality-Aware Memory Network for Interactive Volumetric Image
Segmentation [15.504425842953676]
We propose a quality-aware memory network for interactive segmentation of 3D medical images.
A quality assessment module is introduced to suggest the next slice to segment based on the current segmentation quality of each slice.
The proposed network leads to a robust interactive segmentation engine, which can generalize well to various types of user annotations.
arXiv Detail & Related papers (2021-06-20T12:34:19Z) - Bidirectional RNN-based Few Shot Learning for 3D Medical Image
Segmentation [11.873435088539459]
We propose a 3D few shot segmentation framework for accurate organ segmentation using limited training samples of the target organ annotation.
A U-Net like network is designed to predict segmentation by learning the relationship between 2D slices of support data and a query image.
We evaluate our proposed model using three 3D CT datasets with annotations of different organs.
arXiv Detail & Related papers (2020-11-19T01:44:55Z) - VerSe: A Vertebrae Labelling and Segmentation Benchmark for
Multi-detector CT Images [121.31355003451152]
Large Scale Vertebrae Challenge (VerSe) was organised in conjunction with the International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI) in 2019 and 2020.
We present the the results of this evaluation and further investigate the performance-variation at vertebra-level, scan-level, and at different fields-of-view.
arXiv Detail & Related papers (2020-01-24T21:09:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.