論文の概要: Graph Representation Learning for Spatial Image Steganalysis
- arxiv url: http://arxiv.org/abs/2110.00957v1
- Date: Sun, 3 Oct 2021 09:09:08 GMT
- ステータス: 処理完了
- システム内更新日: 2021-10-05 15:09:36.720656
- Title: Graph Representation Learning for Spatial Image Steganalysis
- Title(参考訳): 空間画像ステガナリシスのためのグラフ表現学習
- Authors: Qiyun Liu and Hanzhou Wu
- Abstract要約: 空間画像ステガナリシスのためのグラフ表現学習アーキテクチャを提案する。
詳細なアーキテクチャでは、各画像をグラフに変換し、ノードは画像のパッチを表し、エッジはパッチ間の局所的な関連を示す。
注意ネットワークにグラフを供給することにより、効率的なステガナリシスのための識別的特徴を学習することができる。
- 参考スコア(独自算出の注目度): 11.358487655918678
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we introduce a graph representation learning architecture for
spatial image steganalysis, which is motivated by the assumption that
steganographic modifications unavoidably distort the statistical
characteristics of the hidden graph features derived from cover images. In the
detailed architecture, we translate each image to a graph, where nodes
represent the patches of the image and edges indicate the local associations
between the patches. Each node is associated with a feature vector determined
from the corresponding patch by a shallow convolutional neural network (CNN)
structure. By feeding the graph to an attention network, the discriminative
features can be learned for efficient steganalysis. Experiments indicate that
the reported architecture achieves a competitive performance compared to the
benchmark CNN model, which has shown the potential of graph learning for
steganalysis.
- Abstract(参考訳): 本稿では,空間像ステガナリシスのためのグラフ表現学習アーキテクチャを提案する。このアーキテクチャは,表層画像から得られた隠れグラフの特徴の統計的特性を必然的に歪めてしまうという仮定によって動機付けられている。
詳細なアーキテクチャでは、各イメージをグラフに変換し、ノードがイメージのパッチを表し、エッジがパッチ間のローカルな関連を示しています。
各ノードは、浅い畳み込みニューラルネットワーク(CNN)構造によって対応するパッチから決定される特徴ベクトルに関連付けられる。
注意ネットワークにグラフを供給することにより、効率的なステガナリシスのための識別的特徴を学習することができる。
実験により, 報告されたアーキテクチャは, ステガナリシスにおけるグラフ学習の可能性を示すベンチマークCNNモデルと比較して, 競争性能が向上していることが示された。
関連論文リスト
- GNN-LoFI: a Novel Graph Neural Network through Localized Feature-based
Histogram Intersection [51.608147732998994]
グラフニューラルネットワークは、グラフベースの機械学習の選択フレームワークになりつつある。
本稿では,古典的メッセージパッシングに代えて,ノード特徴の局所分布を解析するグラフニューラルネットワークアーキテクチャを提案する。
論文 参考訳(メタデータ) (2024-01-17T13:04:23Z) - Patch-wise Graph Contrastive Learning for Image Translation [69.85040887753729]
グラフニューラルネットワークを利用して、トポロジを意識した特徴をキャプチャする。
予め訓練されたエンコーダからパッチワイドな類似性に基づいてグラフを構築する。
階層的な意味構造を捉えるために,グラフプーリングを提案する。
論文 参考訳(メタデータ) (2023-12-13T15:45:19Z) - Graph Condensation via Receptive Field Distribution Matching [61.71711656856704]
本稿では,元のグラフを表す小さなグラフの作成に焦点をあてる。
我々は、元のグラフを受容体の分布とみなし、受容体が同様の分布を持つ小さなグラフを合成することを目的としている。
論文 参考訳(メタデータ) (2022-06-28T02:10:05Z) - Graph Neural Networks for Image Classification and Reinforcement
Learning using Graph representations [15.256931959393803]
我々は,コンピュータビジョンと強化学習という2つの異なる領域において,グラフニューラルネットワークの性能を評価する。
コンピュータビジョンのセクションでは、グラフとしての画像に対する新しい非冗長表現が、グラフレベルの予測グラフ、特に画像分類において、自明なピクセルからノードマッピングへの性能向上を図っている。
強化学習部では,グラフ問題としてルービックキューブの解法を明示的にモデル化することで,帰納バイアスのない標準モデルフリー手法の性能向上を図っている。
論文 参考訳(メタデータ) (2022-03-07T15:16:31Z) - Learning Hierarchical Graph Representation for Image Manipulation
Detection [50.04902159383709]
画像操作検出の目的は、画像内の操作された領域を特定し、特定することである。
最近のアプローチでは、画像に残っている改ざんするアーティファクトをキャプチャするために、洗練された畳み込みニューラルネットワーク(CNN)が採用されている。
本稿では2つの並列分岐からなる階層型グラフ畳み込みネットワーク(HGCN-Net)を提案する。
論文 参考訳(メタデータ) (2022-01-15T01:54:25Z) - VisGraphNet: a complex network interpretation of convolutional neural
features [6.50413414010073]
ニューラルネットワークの特徴マップをモデル化するための可視性グラフの提案と検討を行う。
この研究は、元のデータよりもこれらのグラフによって提供される別の視点によって動機付けられている。
論文 参考訳(メタデータ) (2021-08-27T20:21:04Z) - Spectral Embedding of Graph Networks [76.27138343125985]
ローカルノードの類似性と接続性、グローバル構造をトレードオフする教師なしグラフ埋め込みを導入する。
埋め込みは一般化されたグラフ Laplacian に基づいており、固有ベクトルは1つの表現においてネットワーク構造と近傍近傍の両方をコンパクトにキャプチャする。
論文 参考訳(メタデータ) (2020-09-30T04:59:10Z) - Graph Pooling with Node Proximity for Hierarchical Representation
Learning [80.62181998314547]
本稿では,ノード近接を利用したグラフプーリング手法を提案し,そのマルチホップトポロジを用いたグラフデータの階層的表現学習を改善する。
その結果,提案したグラフプーリング戦略は,公開グラフ分類ベンチマークデータセットの集合において,最先端のパフォーマンスを達成できることが示唆された。
論文 参考訳(メタデータ) (2020-06-19T13:09:44Z) - Graph Partitioning and Graph Neural Network based Hierarchical Graph
Matching for Graph Similarity Computation [5.710312846460821]
グラフ類似性は、下流アプリケーションを容易にするために、1組のグラフ間の類似度スコアを予測することを目的としている。
この問題を効果的に解決するために,PSimGNNと呼ばれるグラフ分割とグラフニューラルネットワークに基づくモデルを提案する。
PSimGNNはグラフ類似度メトリックとして近似グラフ編集距離(GED)を用いてグラフ類似度計算タスクにおける最先端の手法より優れている。
論文 参考訳(メタデータ) (2020-05-16T15:01:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。