RAP-Net: Region Attention Predictive Network for Precipitation
Nowcasting
- URL: http://arxiv.org/abs/2110.01035v1
- Date: Sun, 3 Oct 2021 15:55:18 GMT
- Title: RAP-Net: Region Attention Predictive Network for Precipitation
Nowcasting
- Authors: Chuyao Luo, ZhengZhang, Rui Ye, Xutao Li and Yunming Ye
- Abstract summary: We propose Recall Attention Mechanism (RAM) to improve the prediction.
The experiments show that the proposed Region Attention Predictive Network (RAP-Net) has outperformed the state-of-art method.
- Score: 15.587959542301789
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Natural disasters caused by heavy rainfall often cost huge loss of life and
property. To avoid it, the task of precipitation nowcasting is imminent. To
solve the problem, increasingly deep learning methods are proposed to forecast
future radar echo images and then the predicted maps have converted the
distribution of rainfall. The prevailing spatiotemporal sequence prediction
methods apply ConvRNN structure which combines the Convolution and Recurrent
neural network. Although improvements based on ConvRNN achieve remarkable
success, these methods ignore capturing both local and global spatial features
simultaneously, which degrades the nowcasting in the region of heavy rainfall.
To address this issue, we proposed the Region Attention Block (RAB) and embed
it into ConvRNN to enhance the forecast in the area with strong rainfall.
Besides, the ConvRNN models are hard to memory longer history representations
with limited parameters. Considering it, we propose Recall Attention Mechanism
(RAM) to improve the prediction. By preserving longer temporal information, RAM
contributes to the forecasting, especially in the middle rainfall intensity.
The experiments show that the proposed model Region Attention Predictive
Network (RAP-Net) has outperformed the state-of-art method.
Related papers
- PostCast: Generalizable Postprocessing for Precipitation Nowcasting via Unsupervised Blurriness Modeling [85.56969895866243]
We propose an unsupervised postprocessing method to eliminate the blurriness without the requirement of training with the pairs of blurry predictions and corresponding ground truth.
A zero-shot blur kernel estimation mechanism and an auto-scale denoise guidance strategy are introduced to adapt the unconditional correlations to any blurriness modes.
arXiv Detail & Related papers (2024-10-08T08:38:23Z) - SFANet: Spatial-Frequency Attention Network for Weather Forecasting [54.470205739015434]
Weather forecasting plays a critical role in various sectors, driving decision-making and risk management.
Traditional methods often struggle to capture the complex dynamics of meteorological systems.
We propose a novel framework designed to address these challenges and enhance the accuracy of weather prediction.
arXiv Detail & Related papers (2024-05-29T08:00:15Z) - CasCast: Skillful High-resolution Precipitation Nowcasting via Cascaded
Modelling [93.65319031345197]
We propose CasCast, a cascaded framework composed of a deterministic and a probabilistic part to decouple predictions for mesoscale precipitation distributions and small-scale patterns.
CasCast significantly surpasses the baseline (up to +91.8%) for regional extreme-precipitation nowcasting.
arXiv Detail & Related papers (2024-02-06T08:30:47Z) - Learning Robust Precipitation Forecaster by Temporal Frame Interpolation [65.5045412005064]
We develop a robust precipitation forecasting model that demonstrates resilience against spatial-temporal discrepancies.
Our approach has led to significant improvements in forecasting precision, culminating in our model securing textit1st place in the transfer learning leaderboard of the textitWeather4cast'23 competition.
arXiv Detail & Related papers (2023-11-30T08:22:08Z) - Skilful Precipitation Nowcasting Using NowcastNet [0.0]
Precipitation nowcasting can help relevant institutions to better prepare for such events as they impact agriculture, transport, public health and safety, etc.
We use recently proposed NowcastNet, a physics-conditioned deep generative network, to forecast precipitation for different regions of Europe using satellite images.
arXiv Detail & Related papers (2023-11-29T11:24:52Z) - Rapid Flood Inundation Forecast Using Fourier Neural Operator [77.30160833875513]
Flood inundation forecast provides critical information for emergency planning before and during flood events.
High-resolution hydrodynamic modeling has become more accessible in recent years, however, predicting flood extents at the street and building levels in real-time is still computationally demanding.
We present a hybrid process-based and data-driven machine learning (ML) approach for flood extent and inundation depth prediction.
arXiv Detail & Related papers (2023-07-29T22:49:50Z) - Forecasting large-scale circulation regimes using deformable
convolutional neural networks and global spatiotemporal climate data [86.1450118623908]
We investigate a supervised machine learning approach based on deformable convolutional neural networks (deCNNs)
We forecast the North Atlantic-European weather regimes during extended boreal winter for 1 to 15 days into the future.
Due to its wider field of view, we also observe deCNN achieving considerably better performance than regular convolutional neural networks at lead times beyond 5-6 days.
arXiv Detail & Related papers (2022-02-10T11:37:00Z) - Skillful Precipitation Nowcasting using Deep Generative Models of Radar [24.220892855431494]
We present a Deep Generative Model for the probabilistic nowcasting of precipitation from radar.
Our model produces realistic andtemporally consistent predictions over regions up to 1536 km x 1280 km and with lead times from 5-90 min ahead.
In a systematic evaluation by more than fifty expert forecasters from the Met Office, our generative model ranked first for its accuracy and usefulness in 88% of cases against two competitive methods.
arXiv Detail & Related papers (2021-04-02T09:29:03Z) - Accurate and Clear Precipitation Nowcasting with Consecutive Attention
and Rain-map Discrimination [11.686939430992966]
We propose a new deep learning model for precipitation nowcasting that includes both the discrimination and attention techniques.
The model is examined on a newly-built benchmark dataset that contains both radar data and actual rain data.
arXiv Detail & Related papers (2021-02-16T14:22:54Z) - SmaAt-UNet: Precipitation Nowcasting using a Small Attention-UNet
Architecture [5.28539620288341]
We show that it is possible to produce an accurate precipitation nowcast using a data-driven neural network approach.
We evaluate our approaches on a real-life datasets using precipitation maps from the region of the Netherlands and binary images of cloud coverage of France.
arXiv Detail & Related papers (2020-07-08T20:33:10Z) - Prediction of Bayesian Intervals for Tropical Storms [1.7132914341329848]
Tropical storms are capable of causing severe damage, so accurately predicting their trajectories can bring significant benefits to cities and lives.
We have developed improved methods and generalized the approach to predict Bayesian intervals in addition to simple point estimates.
Our results show how neural network dropout values affect predictions and intervals.
arXiv Detail & Related papers (2020-03-10T22:31:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.