Skilful Precipitation Nowcasting Using NowcastNet
- URL: http://arxiv.org/abs/2311.17961v2
- Date: Fri, 8 Dec 2023 14:51:10 GMT
- Title: Skilful Precipitation Nowcasting Using NowcastNet
- Authors: Ajitabh Kumar
- Abstract summary: Precipitation nowcasting can help relevant institutions to better prepare for such events as they impact agriculture, transport, public health and safety, etc.
We use recently proposed NowcastNet, a physics-conditioned deep generative network, to forecast precipitation for different regions of Europe using satellite images.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Designing early warning system for precipitation requires accurate short-term
forecasting system. Climate change has led to an increase in frequency of
extreme weather events, and hence such systems can prevent disasters and loss
of life. Managing such events remain a challenge for both public and private
institutions. Precipitation nowcasting can help relevant institutions to better
prepare for such events as they impact agriculture, transport, public health
and safety, etc. Physics-based numerical weather prediction (NWP) is unable to
perform well for nowcasting because of large computational turn-around time.
Deep-learning based models on the other hand are able to give predictions
within seconds. We use recently proposed NowcastNet, a physics-conditioned deep
generative network, to forecast precipitation for different regions of Europe
using satellite images. Both spatial and temporal transfer learning is done by
forecasting for the unseen regions and year. Model makes realistic predictions
and is able to outperform baseline for such a prediction task.
Related papers
- FengWu-W2S: A deep learning model for seamless weather-to-subseasonal forecast of global atmosphere [53.22497376154084]
We propose FengWu-Weather to Subseasonal (FengWu-W2S), which builds on the FengWu global weather forecast model and incorporates an ocean-atmosphere-land coupling structure along with a diverse perturbation strategy.
Our hindcast results demonstrate that FengWu-W2S reliably predicts atmospheric conditions out to 3-6 weeks ahead, enhancing predictive capabilities for global surface air temperature, precipitation, geopotential height and intraseasonal signals such as the Madden-Julian Oscillation (MJO) and North Atlantic Oscillation (NAO)
Our ablation experiments on forecast error growth from daily to seasonal timescales reveal potential
arXiv Detail & Related papers (2024-11-15T13:44:37Z) - Validating Deep-Learning Weather Forecast Models on Recent High-Impact Extreme Events [0.1747623282473278]
We compare weather prediction models and ECMWF's high-resolution forecast (HRES) system in three case studies.
We find evidence that machine learning weather prediction models can achieve similar accuracy to HRES on record-shattering events.
However, extrapolating to extreme conditions may impact machine learning models more severely than HRES.
arXiv Detail & Related papers (2024-04-26T18:18:25Z) - Back to the Future: GNN-based NO$_2$ Forecasting via Future Covariates [49.93577170464313]
We deal with air quality observations in a city-wide network of ground monitoring stations.
We propose a conditioning block that embeds past and future covariates into the current observations.
We find that conditioning on future weather information has a greater impact than considering past traffic conditions.
arXiv Detail & Related papers (2024-04-08T09:13:16Z) - ExtremeCast: Boosting Extreme Value Prediction for Global Weather Forecast [57.6987191099507]
We introduce Exloss, a novel loss function that performs asymmetric optimization and highlights extreme values to obtain accurate extreme weather forecast.
We also introduce ExBooster, which captures the uncertainty in prediction outcomes by employing multiple random samples.
Our solution can achieve state-of-the-art performance in extreme weather prediction, while maintaining the overall forecast accuracy comparable to the top medium-range forecast models.
arXiv Detail & Related papers (2024-02-02T10:34:13Z) - Precipitation Nowcasting With Spatial And Temporal Transfer Learning
Using Swin-UNETR [0.0]
Precipitation nowcasting can help relevant institutions to better prepare for such events.
Recent proposed Swin-UNETR is used for precipitation nowcasting for ten different regions of Europe.
Swin-UNETR utilizes a U-shaped network within which a swin transformer-based encoder extracts multi-scale features from multiple input channels of satellite image.
arXiv Detail & Related papers (2023-11-29T11:35:50Z) - GraphCast: Learning skillful medium-range global weather forecasting [107.40054095223779]
We introduce a machine learning-based method called "GraphCast", which can be trained directly from reanalysis data.
It predicts hundreds of weather variables, over 10 days at 0.25 degree resolution globally, in under one minute.
We show that GraphCast significantly outperforms the most accurate operational deterministic systems on 90% of 1380 verification targets.
arXiv Detail & Related papers (2022-12-24T18:15:39Z) - Forecasting large-scale circulation regimes using deformable
convolutional neural networks and global spatiotemporal climate data [86.1450118623908]
We investigate a supervised machine learning approach based on deformable convolutional neural networks (deCNNs)
We forecast the North Atlantic-European weather regimes during extended boreal winter for 1 to 15 days into the future.
Due to its wider field of view, we also observe deCNN achieving considerably better performance than regular convolutional neural networks at lead times beyond 5-6 days.
arXiv Detail & Related papers (2022-02-10T11:37:00Z) - Short-term precipitation prediction using deep learning [5.1589108738893215]
We show that a 3D convolutional neural network using a single frame of meteorology fields is capable of predicting the precipitation spatial distribution.
The network is developed based on 39-years (1980-2018) data of meteorology and daily precipitation over the contiguous United States.
arXiv Detail & Related papers (2021-10-05T06:37:24Z) - Accurate and Clear Precipitation Nowcasting with Consecutive Attention
and Rain-map Discrimination [11.686939430992966]
We propose a new deep learning model for precipitation nowcasting that includes both the discrimination and attention techniques.
The model is examined on a newly-built benchmark dataset that contains both radar data and actual rain data.
arXiv Detail & Related papers (2021-02-16T14:22:54Z) - A generative adversarial network approach to (ensemble) weather
prediction [91.3755431537592]
We use a conditional deep convolutional generative adversarial network to predict the geopotential height of the 500 hPa pressure level, the two-meter temperature and the total precipitation for the next 24 hours over Europe.
The proposed models are trained on 4 years of ERA5 reanalysis data from 2015-2018 with the goal to predict the associated meteorological fields in 2019.
arXiv Detail & Related papers (2020-06-13T20:53:17Z) - A review of radar-based nowcasting of precipitation and applicable
machine learning techniques [3.0581668008670673]
A 'nowcast' is a type of weather forecast which makes predictions in the very short term, typically less than two hours.
This type of weather prediction has important applications for commercial aviation; public and outdoor events; and the construction industry.
New advances are possible with new partnerships between the environmental science and machine learning communities.
arXiv Detail & Related papers (2020-05-11T10:34:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.