Entanglement generation in a quantum network with finite quantum memory
lifetime
- URL: http://arxiv.org/abs/2110.01061v2
- Date: Sun, 20 Mar 2022 19:51:45 GMT
- Title: Entanglement generation in a quantum network with finite quantum memory
lifetime
- Authors: Vyacheslav Semenenko, Xuedong Hu, Eden Figueroa, Vasili Perebeinos
- Abstract summary: We simulate entanglement sharing between two end-nodes of a quantum network using SeQUeNCe, an open-source simulation package for quantum networks.
Our focus is on the rate of entanglement generation between the end-nodes with many repeaters with a finite quantum memory lifetime.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We simulate entanglement sharing between two end-nodes of a quantum network
using SeQUeNCe, an open-source simulation package for quantum networks. Our
focus is on the rate of entanglement generation between the end-nodes with many
repeaters with a finite quantum memory lifetime. Our findings demonstrate that
the performance of quantum connection depends highly on the entanglement
management protocol scheduling entanglement generation and swapping, resulting
in the final end-to-end entanglement. Numerical and analytical simulations show
limits of connection performance for a given number of repeaters involved,
memory lifetimes for a given distance between the end nodes, and an
entanglement management protocol.
Related papers
- Simulation of Quantum Transduction Strategies for Quantum Networks [7.486717790185952]
We extend SeQUeNCe, a discrete-event simulator of quantum networks, with a quantum transducer component.
We explore two protocols for transmitting quantum information between superconducting nodes via optical channels.
Our preliminary results align with theoretical predictions, offering simulation-based validation of the protocols.
arXiv Detail & Related papers (2024-11-18T08:47:11Z) - Quantum Backbone Networks for Hybrid Quantum Dataframe Transmission [0.26217304977339473]
We elaborate on the design that uses entanglement and quantum teleportation to build the quantum backbone between packetized quantum networks.
We design a network interface to interconnect packetized quantum networks with entanglement-based quantum backbone networks.
For feasibility, we analyze various system parameters via simulation to benchmark the performance of the overall network.
arXiv Detail & Related papers (2024-04-29T09:07:44Z) - Multi-User Entanglement Distribution in Quantum Networks Using Multipath
Routing [55.2480439325792]
We propose three protocols that increase the entanglement rate of multi-user applications by leveraging multipath routing.
The protocols are evaluated on quantum networks with NISQ constraints, including limited quantum memories and probabilistic entanglement generation.
arXiv Detail & Related papers (2023-03-06T18:06:00Z) - Simulation of Entanglement Generation between Absorptive Quantum
Memories [56.24769206561207]
We use the open-source Simulator of QUantum Network Communication (SeQUeNCe), developed by our team, to simulate entanglement generation between two atomic frequency comb (AFC) absorptive quantum memories.
We realize the representation of photonic quantum states within truncated Fock spaces in SeQUeNCe.
We observe varying fidelity with SPDC source mean photon number, and varying entanglement generation rate with both mean photon number and memory mode number.
arXiv Detail & Related papers (2022-12-17T05:51:17Z) - Adaptive, Continuous Entanglement Generation for Quantum Networks [59.600944425468676]
Quantum networks rely on entanglement between qubits at distant nodes to transmit information.
We present an adaptive scheme that uses information from previous requests to better guide the choice of randomly generated quantum links.
We also explore quantum memory allocation scenarios, where a difference in latency performance implies the necessity of optimal allocation of resources for quantum networks.
arXiv Detail & Related papers (2022-12-17T05:40:09Z) - All-Photonic Quantum Repeater for Multipartite Entanglement Generation [6.300599548850421]
Entanglement generation and distribution over long distances is critical and unavoidable to utilize quantum technology in a fully-connected network.
Here we report a two-dimensional quantum repeater protocol for the generation of multipartite entanglement over long distances with all-photonic framework.
Our protocol can work as a significant building block for quantum networks in the future.
arXiv Detail & Related papers (2022-12-10T06:29:27Z) - QuanGCN: Noise-Adaptive Training for Robust Quantum Graph Convolutional
Networks [124.7972093110732]
We propose quantum graph convolutional networks (QuanGCN), which learns the local message passing among nodes with the sequence of crossing-gate quantum operations.
To mitigate the inherent noises from modern quantum devices, we apply sparse constraint to sparsify the nodes' connections.
Our QuanGCN is functionally comparable or even superior than the classical algorithms on several benchmark graph datasets.
arXiv Detail & Related papers (2022-11-09T21:43:16Z) - Telecom-heralded entanglement between remote multimode solid-state
quantum memories [55.41644538483948]
Future quantum networks will enable the distribution of entanglement between distant locations and allow applications in quantum communication, quantum sensing and distributed quantum computation.
Here we report the demonstration of heralded entanglement between two spatially separated quantum nodes, where the entanglement is stored in multimode solid-state quantum memories.
We also show that the generated entanglement is robust against loss in the heralding path, and demonstrate temporally multiplexed operation, with 62 temporal modes.
arXiv Detail & Related papers (2021-01-13T14:31:54Z) - SeQUeNCe: A Customizable Discrete-Event Simulator of Quantum Networks [53.56179714852967]
This work develops SeQUeNCe, a comprehensive, customizable quantum network simulator.
We implement a comprehensive suite of network protocols and demonstrate the use of SeQUeNCe by simulating a photonic quantum network with nine routers equipped with quantum memories.
We are releasing SeQUeNCe as an open source tool and aim to generate community interest in extending it.
arXiv Detail & Related papers (2020-09-25T01:52:15Z) - Entanglement distribution with wavevector-multiplexed quantum memory [0.0]
We show the WV-MUX-QM platform to provide quasi-deterministic entanglement generation over extended distances.
We establish the entangled-bit (ebit) rate per number of employed nodes as a practical figure of merit.
arXiv Detail & Related papers (2020-07-01T15:03:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.