論文の概要: TinyFedTL: Federated Transfer Learning on Tiny Devices
- arxiv url: http://arxiv.org/abs/2110.01107v1
- Date: Sun, 3 Oct 2021 21:43:02 GMT
- ステータス: 処理完了
- システム内更新日: 2021-10-06 02:37:45.683089
- Title: TinyFedTL: Federated Transfer Learning on Tiny Devices
- Title(参考訳): TinyFedTL:Tinyデバイス上でのフェデレーショントランスファー学習
- Authors: Kavya Kopparapu, Eric Lin
- Abstract要約: 本稿では,リソース制約されたマイクロコントローラ上でのフェデレートトランスファー学習の実装であるTinyFedTLを提案する。
これらの課題を踏まえて、リソース制約されたマイクロコントローラ上でのフェデレーショントランスファーラーニングの最初の実装であるTinyFedTLを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: TinyML has rose to popularity in an era where data is everywhere. However,
the data that is in most demand is subject to strict privacy and security
guarantees. In addition, the deployment of TinyML hardware in the real world
has significant memory and communication constraints that traditional ML fails
to address. In light of these challenges, we present TinyFedTL, the first
implementation of federated transfer learning on a resource-constrained
microcontroller.
- Abstract(参考訳): TinyMLは、データがどこにでもある時代に人気を博している。
しかし、ほとんどの需要にあるデータは、厳格なプライバシーとセキュリティ保証の対象となる。
さらに、TinyMLハードウェアの現実世界への展開には、従来のMLでは対応できないメモリと通信の制約がかなりある。
このような課題を踏まえ,資源制約型マイクロコントローラ上でのフェデレーション転送学習を初めて実装したtinyfedtlを提案する。
関連論文リスト
- UFed-GAN: A Secure Federated Learning Framework with Constrained
Computation and Unlabeled Data [50.13595312140533]
本稿では,UFed-GAN: Unsupervised Federated Generative Adversarial Networkを提案する。
実験により,プライバシを保ちながら,限られた計算資源とラベルなしデータに対処するUFed-GANの強い可能性を示す。
論文 参考訳(メタデータ) (2023-08-10T22:52:13Z) - TinyMetaFed: Efficient Federated Meta-Learning for TinyML [8.940139322528829]
TinyMLに適したモデルに依存しないメタラーニングフレームワークであるTinyMetaFedを紹介する。
TinyMetaFedはニューラルネットワークの協調トレーニングを支援する。
部分的な局所的な再構築とトッププラスの選択的なコミュニケーションを通じて、コミュニケーションの節約とプライバシ保護を提供する。
論文 参考訳(メタデータ) (2023-07-13T15:39:26Z) - MRN: Multiplexed Routing Network for Incremental Multilingual Text
Recognition [56.408324994409405]
多重ルーティングネットワーク(MRN)は、現在見られる言語ごとに認識器を訓練する。
MRNは、古いデータへの依存を効果的に減らし、破滅的な忘れ物との戦いを改善する。
既存の汎用IL法よりも大きなマージンで優れている。
論文 参考訳(メタデータ) (2023-05-24T06:03:34Z) - Towards Building the Federated GPT: Federated Instruction Tuning [66.7900343035733]
本稿では,大規模言語モデル(LLM)の命令チューニングのための学習フレームワークとして,FedIT(Federated Instruction Tuning)を紹介する。
我々は,FedITを用いてクライアントの終端における多種多様な命令セットを活用することにより,ローカル命令のみを限定した集中学習に比べ,LLMの性能を向上させることを実証した。
論文 参考訳(メタデータ) (2023-05-09T17:42:34Z) - TinyReptile: TinyML with Federated Meta-Learning [9.618821589196624]
メタラーニングとオンラインラーニングにインスパイアされた,シンプルだが効率的なアルゴリズムであるTinyReptileを提案する。
Raspberry Pi 4とCortex-M4 MCUで256KBのRAMでTinyReptileをデモした。
論文 参考訳(メタデータ) (2023-04-11T13:11:10Z) - MinUn: Accurate ML Inference on Microcontrollers [2.2638536653874195]
TinyMLとして知られる小さなデバイスで機械学習推論を実行することは、新たな研究分野である。
MinUnは、ARMマイクロコントローラの効率的なコードを生成するために、これらの問題に一様に対処する最初のTinyMLフレームワークである。
論文 参考訳(メタデータ) (2022-10-29T10:16:12Z) - Fishing for User Data in Large-Batch Federated Learning via Gradient
Magnification [65.33308059737506]
フェデレートラーニング(FL)は、プライバシーと効率性の約束により急速に人気が高まっている。
これまでの作業では、勾配更新からユーザデータを復元することで、FLパイプラインのプライバシの脆弱性が露呈されていた。
我々は、任意のサイズのバッチで運用するために、既存の攻撃を劇的に高める新しい戦略を導入する。
論文 参考訳(メタデータ) (2022-02-01T17:26:11Z) - Decepticons: Corrupted Transformers Breach Privacy in Federated Learning
for Language Models [58.631918656336005]
悪意のあるパラメータベクトルを配置することで、プライベートなユーザテキストを明らかにする新たな攻撃を提案する。
FLに対する以前の攻撃とは異なり、攻撃はTransformerアーキテクチャとトークンの埋め込みの両方の特徴を利用する。
論文 参考訳(メタデータ) (2022-01-29T22:38:21Z) - TinyML Platforms Benchmarking [0.0]
機械学習(ML)のための超低消費電力組み込みデバイス(Ultra-low Power embedded device)の最近の進歩は、新しい種類の製品を可能にしている。
TinyMLは、低消費電力の組み込みデバイス上でエッジでデータを集約して分析することで、ユニークなソリューションを提供する。
MLモデルのデプロイを容易にするため、さまざまなプラットフォーム向けに多くのTinyMLフレームワークが開発されている。
論文 参考訳(メタデータ) (2021-11-30T15:26:26Z) - A TinyML Platform for On-Device Continual Learning with Quantized Latent
Replays [66.62377866022221]
Latent Replay-based Continual Learning (CL)技術は、原則としてオンライン、サーバレスの適応を可能にする。
10コアのFP32対応並列超低消費電力プロセッサをベースとした,エンドツーエンドCLのためのHW/SWプラットフォームを提案する。
これらの手法を組み合わせることで,64MB未満のメモリを用いて連続学習を実現することができることを示す。
論文 参考訳(メタデータ) (2021-10-20T11:01:23Z) - TinyOL: TinyML with Online-Learning on Microcontrollers [7.172671995820974]
TinyML(Tiny Machine Learning)は、汎用マイクロコントローラ(MCU)のディープラーニングの民主化に取り組んでいます。
現在のTinyMLソリューションはバッチ/オフライン設定に基づいており、MCU上のニューラルネットワークの推論のみをサポートする。
本稿では、ストリーミングデータ上でインクリメンタルなオンデバイストレーニングを可能にするtinyml(tinyml with online-learning)という新しいシステムを提案する。
論文 参考訳(メタデータ) (2021-03-15T11:39:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。