論文の概要: Fishing for User Data in Large-Batch Federated Learning via Gradient
Magnification
- arxiv url: http://arxiv.org/abs/2202.00580v1
- Date: Tue, 1 Feb 2022 17:26:11 GMT
- ステータス: 処理完了
- システム内更新日: 2022-02-02 14:47:24.637780
- Title: Fishing for User Data in Large-Batch Federated Learning via Gradient
Magnification
- Title(参考訳): 勾配拡大による大規模連合学習におけるユーザデータの釣り
- Authors: Yuxin Wen, Jonas Geiping, Liam Fowl, Micah Goldblum, Tom Goldstein
- Abstract要約: フェデレートラーニング(FL)は、プライバシーと効率性の約束により急速に人気が高まっている。
これまでの作業では、勾配更新からユーザデータを復元することで、FLパイプラインのプライバシの脆弱性が露呈されていた。
我々は、任意のサイズのバッチで運用するために、既存の攻撃を劇的に高める新しい戦略を導入する。
- 参考スコア(独自算出の注目度): 65.33308059737506
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated learning (FL) has rapidly risen in popularity due to its promise of
privacy and efficiency. Previous works have exposed privacy vulnerabilities in
the FL pipeline by recovering user data from gradient updates. However,
existing attacks fail to address realistic settings because they either 1)
require a `toy' settings with very small batch sizes, or 2) require unrealistic
and conspicuous architecture modifications. We introduce a new strategy that
dramatically elevates existing attacks to operate on batches of arbitrarily
large size, and without architectural modifications. Our model-agnostic
strategy only requires modifications to the model parameters sent to the user,
which is a realistic threat model in many scenarios. We demonstrate the
strategy in challenging large-scale settings, obtaining high-fidelity data
extraction in both cross-device and cross-silo federated learning.
- Abstract(参考訳): フェデレートラーニング(FL)は、プライバシーと効率性の約束により急速に人気が高まっている。
以前の作業では、グラデーション更新からユーザデータを復元することで、flパイプラインのプライバシの脆弱性を露呈している。
しかし、既存の攻撃は現実的な設定に対処できない。
1)非常に小さなバッチサイズを持つ 'toy' 設定が必要です。
2)非現実的で目立ったアーキテクチャの変更が必要です。
アーキテクチャの変更なしに、任意のサイズのバッチで運用するために既存の攻撃を劇的に高める新しい戦略を導入する。
我々のモデルに依存しない戦略は、多くのシナリオにおいて現実的な脅威モデルであるユーザに送るモデルパラメータの変更のみを必要とする。
クロスデバイスおよびクロスサイロ・フェデレーション学習において,高忠実度データを抽出し,大規模設定に挑戦する戦略を実証する。
関連論文リスト
- Open-Set Deepfake Detection: A Parameter-Efficient Adaptation Method with Forgery Style Mixture [58.60915132222421]
本稿では,顔偽造検出に汎用的かつパラメータ効率の高い手法を提案する。
フォージェリー・ソース・ドメインの多様性を増大させるフォージェリー・ミックス・フォーミュレーションを設計する。
設計したモデルは、トレーニング可能なパラメータを著しく減らし、最先端の一般化性を実現する。
論文 参考訳(メタデータ) (2024-08-23T01:53:36Z) - PriRoAgg: Achieving Robust Model Aggregation with Minimum Privacy Leakage for Federated Learning [49.916365792036636]
フェデレートラーニング(FL)は、大規模分散ユーザデータを活用する可能性から、最近大きな勢いを増している。
送信されたモデル更新は、センシティブなユーザ情報をリークする可能性があり、ローカルなトレーニングプロセスの集中的な制御の欠如は、モデル更新に対する悪意のある操作の影響を受けやすいグローバルモデルを残します。
我々は、Lagrange符号化計算と分散ゼロ知識証明を利用した汎用フレームワークPriRoAggを開発し、集約されたプライバシを満たすとともに、幅広いロバストな集約アルゴリズムを実行する。
論文 参考訳(メタデータ) (2024-07-12T03:18:08Z) - UIFV: Data Reconstruction Attack in Vertical Federated Learning [5.404398887781436]
Vertical Federated Learning (VFL)は、参加者が生のプライベートデータを共有することなく、協調的な機械学習を促進する。
近年の研究では、学習プロセス中にデータ漏洩によって、敵が機密性を再構築する可能性のあるプライバシーリスクが明らかにされている。
我々の研究は、実用的なVFLアプリケーションに真の脅威をもたらす、VFLシステム内の深刻なプライバシー上の脆弱性を露呈する。
論文 参考訳(メタデータ) (2024-06-18T13:18:52Z) - Deep Leakage from Model in Federated Learning [6.001369927772649]
モデル重みの伝達がクライアントのプライベートなローカルデータをリークする可能性を示す2つの新しいフレームワークを提案する。
また,提案攻撃に対する防御策を2つ導入し,その防御効果を評価した。
論文 参考訳(メタデータ) (2022-06-10T05:56:00Z) - Do Gradient Inversion Attacks Make Federated Learning Unsafe? [70.0231254112197]
フェデレートラーニング(FL)は、生データを共有することなく、AIモデルの協調トレーニングを可能にする。
モデル勾配からのディープニューラルネットワークの反転に関する最近の研究は、トレーニングデータの漏洩を防止するためのFLの安全性に関する懸念を提起した。
本研究では,本論文で提示されたこれらの攻撃が実際のFLユースケースでは実行不可能であることを示し,新たなベースライン攻撃を提供する。
論文 参考訳(メタデータ) (2022-02-14T18:33:12Z) - Robbing the Fed: Directly Obtaining Private Data in Federated Learning
with Modified Models [56.0250919557652]
フェデレーション学習は、ユーザーのプライバシーと効率を高めるという約束で急速に人気を集めている。
ユーザプライバシに対する以前の攻撃はスコープが限られており、少数のデータポイントに集約されたグラデーション更新にはスケールしない。
共有モデルアーキテクチャの最小限ではあるが悪意のある変更に基づく新しい脅威モデルを導入する。
論文 参考訳(メタデータ) (2021-10-25T15:52:06Z) - PRECODE - A Generic Model Extension to Prevent Deep Gradient Leakage [0.8029049649310213]
ニューラルネットワークの協調トレーニングは、異なるクライアント間で勾配情報を交換することで、分散データを活用する。
プライバシーを高めるために勾配摂動技術が提案されているが、モデル性能の低下、収束時間の増加、データ要求の増加といったコストが伴う。
任意のモデルアーキテクチャの汎用拡張として使用できるPRivacy EnhanCing mODulEであるPrepreCODEを紹介する。
論文 参考訳(メタデータ) (2021-08-10T14:43:17Z) - RoFL: Attestable Robustness for Secure Federated Learning [59.63865074749391]
フェデレートラーニング(Federated Learning)により、多数のクライアントが、プライベートデータを共有することなく、ジョイントモデルをトレーニングできる。
クライアントのアップデートの機密性を保証するため、フェデレートラーニングシステムはセキュアなアグリゲーションを採用している。
悪意のあるクライアントに対する堅牢性を向上させるセキュアなフェデレート学習システムであるRoFLを提案する。
論文 参考訳(メタデータ) (2021-07-07T15:42:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。