Hit and Lead Discovery with Explorative RL and Fragment-based Molecule
Generation
- URL: http://arxiv.org/abs/2110.01219v2
- Date: Tue, 5 Oct 2021 15:22:33 GMT
- Title: Hit and Lead Discovery with Explorative RL and Fragment-based Molecule
Generation
- Authors: Soojung Yang and Doyeong Hwang and Seul Lee and Seongok Ryu and Sung
Ju Hwang
- Abstract summary: We propose a novel framework that generates pharmacochemically acceptable molecules with large docking scores.
Our method constrains the generated molecules to a realistic and qualified chemical space and effectively explores the space to find drugs.
Our model produces molecules of higher quality compared to existing methods while achieving state-of-the-art performance on two of three targets.
- Score: 34.26748101294543
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recently, utilizing reinforcement learning (RL) to generate molecules with
desired properties has been highlighted as a promising strategy for drug
design. A molecular docking program - a physical simulation that estimates
protein-small molecule binding affinity - can be an ideal reward scoring
function for RL, as it is a straightforward proxy of the therapeutic potential.
Still, two imminent challenges exist for this task. First, the models often
fail to generate chemically realistic and pharmacochemically acceptable
molecules. Second, the docking score optimization is a difficult exploration
problem that involves many local optima and less smooth surfaces with respect
to molecular structure. To tackle these challenges, we propose a novel RL
framework that generates pharmacochemically acceptable molecules with large
docking scores. Our method - Fragment-based generative RL with Explorative
Experience replay for Drug design (FREED) - constrains the generated molecules
to a realistic and qualified chemical space and effectively explores the space
to find drugs by coupling our fragment-based generation method and a novel
error-prioritized experience replay (PER). We also show that our model performs
well on both de novo and scaffold-based schemes. Our model produces molecules
of higher quality compared to existing methods while achieving state-of-the-art
performance on two of three targets in terms of the docking scores of the
generated molecules. We further show with ablation studies that our method,
predictive error-PER (FREED(PE)), significantly improves the model performance.
Related papers
- Molecule Design by Latent Prompt Transformer [76.2112075557233]
This work explores the challenging problem of molecule design by framing it as a conditional generative modeling task.
We propose a novel generative model comprising three components: (1) a latent vector with a learnable prior distribution; (2) a molecule generation model based on a causal Transformer, which uses the latent vector as a prompt; and (3) a property prediction model that predicts a molecule's target properties and/or constraint values using the latent prompt.
arXiv Detail & Related papers (2024-02-27T03:33:23Z) - DecompDiff: Diffusion Models with Decomposed Priors for Structure-Based Drug Design [62.68420322996345]
Existing structured-based drug design methods treat all ligand atoms equally.
We propose a new diffusion model, DecompDiff, with decomposed priors over arms and scaffold.
Our approach achieves state-of-the-art performance in generating high-affinity molecules.
arXiv Detail & Related papers (2024-02-26T05:21:21Z) - FREED++: Improving RL Agents for Fragment-Based Molecule Generation by
Thorough Reproduction [33.57089414199478]
Reinforcement Learning (RL) has emerged as a promising approach to generating molecules with the docking score (DS) as a reward.
We reproduce, scrutinize and improve the recent model for molecule generation called FREED (arXiv:2110.01219)
arXiv Detail & Related papers (2024-01-18T09:54:19Z) - Retrieval-based Controllable Molecule Generation [63.44583084888342]
We propose a new retrieval-based framework for controllable molecule generation.
We use a small set of molecules to steer the pre-trained generative model towards synthesizing molecules that satisfy the given design criteria.
Our approach is agnostic to the choice of generative models and requires no task-specific fine-tuning.
arXiv Detail & Related papers (2022-08-23T17:01:16Z) - Exploring Chemical Space with Score-based Out-of-distribution Generation [57.15855198512551]
We propose a score-based diffusion scheme that incorporates out-of-distribution control in the generative differential equation (SDE)
Since some novel molecules may not meet the basic requirements of real-world drugs, MOOD performs conditional generation by utilizing the gradients from a property predictor.
We experimentally validate that MOOD is able to explore the chemical space beyond the training distribution, generating molecules that outscore ones found with existing methods, and even the top 0.01% of the original training pool.
arXiv Detail & Related papers (2022-06-06T06:17:11Z) - Molecular Attributes Transfer from Non-Parallel Data [57.010952598634944]
We formulate molecular optimization as a style transfer problem and present a novel generative model that could automatically learn internal differences between two groups of non-parallel data.
Experiments on two molecular optimization tasks, toxicity modification and synthesizability improvement, demonstrate that our model significantly outperforms several state-of-the-art methods.
arXiv Detail & Related papers (2021-11-30T06:10:22Z) - MIMOSA: Multi-constraint Molecule Sampling for Molecule Optimization [51.00815310242277]
generative models and reinforcement learning approaches made initial success, but still face difficulties in simultaneously optimizing multiple drug properties.
We propose the MultI-constraint MOlecule SAmpling (MIMOSA) approach, a sampling framework to use input molecule as an initial guess and sample molecules from the target distribution.
arXiv Detail & Related papers (2020-10-05T20:18:42Z) - Scaffold-constrained molecular generation [0.0]
We build on the well-known SMILES-based Recurrent Neural Network (RNN) generative model, with a modified sampling procedure to achieve scaffold-constrained generation.
We showcase the method's ability to perform scaffold-constrained generation on various tasks.
arXiv Detail & Related papers (2020-09-15T15:41:18Z) - The Synthesizability of Molecules Proposed by Generative Models [3.032184156362992]
Discovery of functional molecules is an expensive and time-consuming process.
One class of techniques of growing interest for early-stage drug discovery is de novo molecular generation and optimization.
These techniques can suggest novel molecular structures intended to maximize a multi-objective function.
However, the utility of these approaches is stymied by ignorance of synthesizability.
arXiv Detail & Related papers (2020-02-17T15:41:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.