ACDC: Online Unsupervised Cross-Domain Adaptation
- URL: http://arxiv.org/abs/2110.01326v1
- Date: Mon, 4 Oct 2021 11:08:32 GMT
- Title: ACDC: Online Unsupervised Cross-Domain Adaptation
- Authors: Marcus de Carvalho, Mahardhika Pratama, Jie Zhang, Edward Yapp
- Abstract summary: We propose ACDC, an adversarial unsupervised domain adaptation framework.
ACDC encapsulates three modules into a single model: A denoising autoencoder that extracts features, an adversarial module that performs domain conversion, and an estimator that learns the source stream and predicts the target stream.
Our experimental results under the prequential test-then-train protocol indicate an improvement in target accuracy over the baseline methods, achieving more than a 10% increase in some cases.
- Score: 15.72925931271688
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We consider the problem of online unsupervised cross-domain adaptation, where
two independent but related data streams with different feature spaces -- a
fully labeled source stream and an unlabeled target stream -- are learned
together. Unique characteristics and challenges such as covariate shift,
asynchronous concept drifts, and contrasting data throughput arises. We propose
ACDC, an adversarial unsupervised domain adaptation framework that handles
multiple data streams with a complete self-evolving neural network structure
that reacts to these defiances. ACDC encapsulates three modules into a single
model: A denoising autoencoder that extracts features, an adversarial module
that performs domain conversion, and an estimator that learns the source stream
and predicts the target stream. ACDC is a flexible and expandable framework
with little hyper-parameter tunability. Our experimental results under the
prequential test-then-train protocol indicate an improvement in target accuracy
over the baseline methods, achieving more than a 10\% increase in some cases.
Related papers
- Reshaping the Online Data Buffering and Organizing Mechanism for Continual Test-Time Adaptation [49.53202761595912]
Continual Test-Time Adaptation involves adapting a pre-trained source model to continually changing unsupervised target domains.
We analyze the challenges of this task: online environment, unsupervised nature, and the risks of error accumulation and catastrophic forgetting.
We propose an uncertainty-aware buffering approach to identify and aggregate significant samples with high certainty from the unsupervised, single-pass data stream.
arXiv Detail & Related papers (2024-07-12T15:48:40Z) - Online Boosting Adaptive Learning under Concept Drift for Multistream
Classification [34.64751041290346]
Multistream classification poses significant challenges due to the necessity for rapid adaptation in dynamic streaming processes with concept drift.
We propose a novel Online Boosting Adaptive Learning (OBAL) method that adaptively learns the dynamic correlation among different streams.
arXiv Detail & Related papers (2023-12-17T23:10:39Z) - Uncertainty-Aware Source-Free Adaptive Image Super-Resolution with Wavelet Augmentation Transformer [60.31021888394358]
Unsupervised Domain Adaptation (UDA) can effectively address domain gap issues in real-world image Super-Resolution (SR)
We propose a SOurce-free Domain Adaptation framework for image SR (SODA-SR) to address this issue, i.e., adapt a source-trained model to a target domain with only unlabeled target data.
arXiv Detail & Related papers (2023-03-31T03:14:44Z) - Confidence Attention and Generalization Enhanced Distillation for
Continuous Video Domain Adaptation [62.458968086881555]
Continuous Video Domain Adaptation (CVDA) is a scenario where a source model is required to adapt to a series of individually available changing target domains.
We propose a Confidence-Attentive network with geneRalization enhanced self-knowledge disTillation (CART) to address the challenge in CVDA.
arXiv Detail & Related papers (2023-03-18T16:40:10Z) - Divide and Contrast: Source-free Domain Adaptation via Adaptive
Contrastive Learning [122.62311703151215]
Divide and Contrast (DaC) aims to connect the good ends of both worlds while bypassing their limitations.
DaC divides the target data into source-like and target-specific samples, where either group of samples is treated with tailored goals.
We further align the source-like domain with the target-specific samples using a memory bank-based Maximum Mean Discrepancy (MMD) loss to reduce the distribution mismatch.
arXiv Detail & Related papers (2022-11-12T09:21:49Z) - Memory Consistent Unsupervised Off-the-Shelf Model Adaptation for
Source-Relaxed Medical Image Segmentation [13.260109561599904]
Unsupervised domain adaptation (UDA) has been a vital protocol for migrating information learned from a labeled source domain to an unlabeled heterogeneous target domain.
We propose "off-the-shelf (OS)" UDA (OSUDA), aimed at image segmentation, by adapting an OS segmentor trained in a source domain to a target domain, in the absence of source domain data in adaptation.
arXiv Detail & Related papers (2022-09-16T13:13:50Z) - Semi-supervised Domain Adaptive Structure Learning [72.01544419893628]
Semi-supervised domain adaptation (SSDA) is a challenging problem requiring methods to overcome both 1) overfitting towards poorly annotated data and 2) distribution shift across domains.
We introduce an adaptive structure learning method to regularize the cooperation of SSL and DA.
arXiv Detail & Related papers (2021-12-12T06:11:16Z) - Attentive Prototypes for Source-free Unsupervised Domain Adaptive 3D
Object Detection [85.11649974840758]
3D object detection networks tend to be biased towards the data they are trained on.
We propose a single-frame approach for source-free, unsupervised domain adaptation of lidar-based 3D object detectors.
arXiv Detail & Related papers (2021-11-30T18:42:42Z) - TDACNN: Target-domain-free Domain Adaptation Convolutional Neural
Network for Drift Compensation in Gas Sensors [6.451060076703026]
In this paper, deep learning based on a target-domain-free domain adaptation convolutional neural network (TDACNN) is proposed.
The main concept is that CNNs extract not only the domain-specific features of samples but also the domain-invariant features underlying both the source and target domains.
Experiments on two datasets drift under different settings demonstrate the superiority of TDACNN compared with several state-of-the-art methods.
arXiv Detail & Related papers (2021-10-14T16:30:17Z) - Dynamic Domain Adaptation for Efficient Inference [12.713628738434881]
Domain adaptation (DA) enables knowledge transfer from a labeled source domain to an unlabeled target domain.
Most prior DA approaches leverage complicated and powerful deep neural networks to improve the adaptation capacity.
We propose a dynamic domain adaptation (DDA) framework, which can simultaneously achieve efficient target inference in low-resource scenarios.
arXiv Detail & Related papers (2021-03-26T08:53:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.