CENN: Conservative energy method based on neural network with subdomains
for solving heterogeneous problems involving complex geometries
- URL: http://arxiv.org/abs/2110.01359v1
- Date: Sat, 25 Sep 2021 09:52:51 GMT
- Title: CENN: Conservative energy method based on neural network with subdomains
for solving heterogeneous problems involving complex geometries
- Authors: Yizheng Wang, Jia Sun, Xiang Li, Yinghua Liu
- Abstract summary: We propose a conservative energy method based on a neural network with (CENN)
The admissible function satisfying the essential boundary condition without boundary penalty is constructed by the radial basis function, particular solution neural network, and general neural network.
We apply the proposed method to some representative examples to demonstrate the ability of the method to model strong discontinuity, singularity, complex boundary, non-linear, and heterogeneous PDE problems.
- Score: 6.782934398825898
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a conservative energy method based on a neural network with
subdomains (CENN), where the admissible function satisfying the essential
boundary condition without boundary penalty is constructed by the radial basis
function, particular solution neural network, and general neural network. The
loss term at the interfaces has the lower order derivative compared to the
strong form PINN with subdomains. We apply the proposed method to some
representative examples to demonstrate the ability of the proposed method to
model strong discontinuity, singularity, complex boundary, non-linear, and
heterogeneous PDE problems. The advantage of the method is the efficiency and
accuracy compared to the strong form PINN. It is worth emphasizing that the
method has a natural advantage in dealing with heterogeneous problems.
Related papers
- Solving Poisson Equations using Neural Walk-on-Spheres [80.1675792181381]
We propose Neural Walk-on-Spheres (NWoS), a novel neural PDE solver for the efficient solution of high-dimensional Poisson equations.
We demonstrate the superiority of NWoS in accuracy, speed, and computational costs.
arXiv Detail & Related papers (2024-06-05T17:59:22Z) - RoPINN: Region Optimized Physics-Informed Neural Networks [66.38369833561039]
Physics-informed neural networks (PINNs) have been widely applied to solve partial differential equations (PDEs)
This paper proposes and theoretically studies a new training paradigm as region optimization.
A practical training algorithm, Region Optimized PINN (RoPINN), is seamlessly derived from this new paradigm.
arXiv Detail & Related papers (2024-05-23T09:45:57Z) - N-Adaptive Ritz Method: A Neural Network Enriched Partition of Unity for
Boundary Value Problems [1.2200609701777907]
This work introduces a novel neural network-enriched Partition of Unity (NN-PU) approach for solving boundary value problems via artificial neural networks.
The NN enrichment is constructed by combining pre-trained feature-encoded NN blocks with an untrained NN block.
The proposed method offers accurate solutions while notably reducing the computational cost compared to the conventional adaptive refinement in the mesh-based methods.
arXiv Detail & Related papers (2024-01-16T18:11:14Z) - Optimizing Solution-Samplers for Combinatorial Problems: The Landscape
of Policy-Gradient Methods [52.0617030129699]
We introduce a novel theoretical framework for analyzing the effectiveness of DeepMatching Networks and Reinforcement Learning methods.
Our main contribution holds for a broad class of problems including Max-and Min-Cut, Max-$k$-Bipartite-Bi, Maximum-Weight-Bipartite-Bi, and Traveling Salesman Problem.
As a byproduct of our analysis we introduce a novel regularization process over vanilla descent and provide theoretical and experimental evidence that it helps address vanishing-gradient issues and escape bad stationary points.
arXiv Detail & Related papers (2023-10-08T23:39:38Z) - A Stable and Scalable Method for Solving Initial Value PDEs with Neural
Networks [52.5899851000193]
We develop an ODE based IVP solver which prevents the network from getting ill-conditioned and runs in time linear in the number of parameters.
We show that current methods based on this approach suffer from two key issues.
First, following the ODE produces an uncontrolled growth in the conditioning of the problem, ultimately leading to unacceptably large numerical errors.
arXiv Detail & Related papers (2023-04-28T17:28:18Z) - A mixed formulation for physics-informed neural networks as a potential
solver for engineering problems in heterogeneous domains: comparison with
finite element method [0.0]
Physics-informed neural networks (PINNs) are capable of finding the solution for a given boundary value problem.
We employ several ideas from the finite element method (FEM) to enhance the performance of existing PINNs in engineering problems.
arXiv Detail & Related papers (2022-06-27T08:18:08Z) - dNNsolve: an efficient NN-based PDE solver [62.997667081978825]
We introduce dNNsolve, that makes use of dual Neural Networks to solve ODEs/PDEs.
We show that dNNsolve is capable of solving a broad range of ODEs/PDEs in 1, 2 and 3 spacetime dimensions.
arXiv Detail & Related papers (2021-03-15T19:14:41Z) - A Deep Learning approach to Reduced Order Modelling of Parameter
Dependent Partial Differential Equations [0.2148535041822524]
We develop a constructive approach based on Deep Neural Networks for the efficient approximation of the parameter-to-solution map.
In particular, we consider parametrized advection-diffusion PDEs, and we test the methodology in the presence of strong transport fields.
arXiv Detail & Related papers (2021-03-10T17:01:42Z) - Hybrid FEM-NN models: Combining artificial neural networks with the
finite element method [0.0]
We present a methodology combining neural networks with physical principle constraints in the form of partial differential equations (PDEs)
The approach allows to train neural networks while respecting the PDEs as a strong constraint in the optimisation as apposed to making them part of the loss function.
We demonstrate the method on a complex cardiac cell model problem using deep neural networks.
arXiv Detail & Related papers (2021-01-04T13:36:06Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
One of the main challenges in using deep learning-based methods for simulating physical systems is formulating physics-based data.
We propose a novel multi-level graph neural network framework that captures interaction at all ranges with only linear complexity.
Experiments confirm our multi-graph network learns discretization-invariant solution operators to PDEs and can be evaluated in linear time.
arXiv Detail & Related papers (2020-06-16T21:56:22Z) - PFNN: A Penalty-Free Neural Network Method for Solving a Class of
Second-Order Boundary-Value Problems on Complex Geometries [4.620110353542715]
We present PFNN, a penalty-free neural network method, to solve a class of second-order boundary-value problems.
PFNN is superior to several existing approaches in terms of accuracy, flexibility and robustness.
arXiv Detail & Related papers (2020-04-14T13:36:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.