Balanced Masked and Standard Face Recognition
- URL: http://arxiv.org/abs/2110.01521v1
- Date: Mon, 4 Oct 2021 15:41:05 GMT
- Title: Balanced Masked and Standard Face Recognition
- Authors: Delong Qi, Kangli Hu, Weijun Tan, Qi Yao, Jingfeng Liu
- Abstract summary: We present the improved network architecture, data augmentation, and training strategies for the Webface track and Insightface/Glint360K track of the masked face recognition challenge of ICCV 2021.
- Score: 1.2149550080095914
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present the improved network architecture, data augmentation, and training
strategies for the Webface track and Insightface/Glint360K track of the masked
face recognition challenge of ICCV2021. One of the key goals is to have a
balanced performance of masked and standard face recognition. In order to
prevent the overfitting for the masked face recognition, we control the total
number of masked faces by not more than 10\% of the total face recognition in
the training dataset. We propose a few key changes to the face recognition
network including a new stem unit, drop block, face detection and alignment
using YOLO5Face, feature concatenation, a cycle cosine learning rate, etc. With
this strategy, we achieve good and balanced performance for both masked and
standard face recognition.
Related papers
- LAFS: Landmark-based Facial Self-supervised Learning for Face
Recognition [37.4550614524874]
We focus on learning facial representations that can be adapted to train effective face recognition models.
We explore the learning strategy of unlabeled facial images through self-supervised pretraining.
Our method achieves significant improvement over the state-of-the-art on multiple face recognition benchmarks.
arXiv Detail & Related papers (2024-03-13T01:07:55Z) - Towards Large-scale Masked Face Recognition [44.380235958577785]
During the COVID-19 coronavirus epidemic, almost everyone is wearing masks, which poses a huge challenge for deep learning-based face recognition algorithms.
In this paper, we will present our textbfchampionship solutions in ICCV MFR WebFace260M and InsightFace unconstrained tracks.
arXiv Detail & Related papers (2023-10-25T05:04:47Z) - Mask-invariant Face Recognition through Template-level Knowledge
Distillation [3.727773051465455]
Masks affect the performance of previous face recognition systems.
We propose a mask-invariant face recognition solution (MaskInv)
In addition to the distilled knowledge, the student network benefits from additional guidance by margin-based identity classification loss.
arXiv Detail & Related papers (2021-12-10T16:19:28Z) - MLFW: A Database for Face Recognition on Masked Faces [56.441078419992046]
Masked LFW (MLFW) is a tool to generate masked faces from unmasked faces automatically.
The recognition accuracy of SOTA models declines 5%-16% on MLFW database compared with the accuracy on the original images.
arXiv Detail & Related papers (2021-09-13T09:30:10Z) - End2End Occluded Face Recognition by Masking Corrupted Features [82.27588990277192]
State-of-the-art general face recognition models do not generalize well to occluded face images.
This paper presents a novel face recognition method that is robust to occlusions based on a single end-to-end deep neural network.
Our approach, named FROM (Face Recognition with Occlusion Masks), learns to discover the corrupted features from the deep convolutional neural networks, and clean them by the dynamically learned masks.
arXiv Detail & Related papers (2021-08-21T09:08:41Z) - Generating Master Faces for Dictionary Attacks with a Network-Assisted
Latent Space Evolution [68.8204255655161]
A master face is a face image that passes face-based identity-authentication for a large portion of the population.
We optimize these faces, by using an evolutionary algorithm in the latent embedding space of the StyleGAN face generator.
arXiv Detail & Related papers (2021-08-01T12:55:23Z) - Contrastive Context-Aware Learning for 3D High-Fidelity Mask Face
Presentation Attack Detection [103.7264459186552]
Face presentation attack detection (PAD) is essential to secure face recognition systems.
Most existing 3D mask PAD benchmarks suffer from several drawbacks.
We introduce a largescale High-Fidelity Mask dataset to bridge the gap to real-world applications.
arXiv Detail & Related papers (2021-04-13T12:48:38Z) - Unmasking Face Embeddings by Self-restrained Triplet Loss for Accurate
Masked Face Recognition [6.865656740940772]
We present a solution to improve the masked face recognition performance.
Specifically, we propose the Embedding Unmasking Model (EUM) operated on top of existing face recognition models.
We also propose a novel loss function, the Self-restrained Triplet (SRT), which enabled the EUM to produce embeddings similar to these of unmasked faces of the same identities.
arXiv Detail & Related papers (2021-03-02T13:43:11Z) - Masked Face Recognition Dataset and Application [28.2082082956263]
This work proposes three types of masked face datasets, including Masked Face Detection dataset (MFDD), Real-world Masked Face Recognition dataset (RMFRD) and Simulated Masked Face Recognition dataset (SMFRD)
The multi-granularity masked face recognition model we developed achieves 95% accuracy, exceeding the results reported by the industry.
arXiv Detail & Related papers (2020-03-20T04:15:19Z) - DotFAN: A Domain-transferred Face Augmentation Network for Pose and
Illumination Invariant Face Recognition [94.96686189033869]
We propose a 3D model-assisted domain-transferred face augmentation network (DotFAN)
DotFAN can generate a series of variants of an input face based on the knowledge distilled from existing rich face datasets collected from other domains.
Experiments show that DotFAN is beneficial for augmenting small face datasets to improve their within-class diversity.
arXiv Detail & Related papers (2020-02-23T08:16:34Z) - Investigating the Impact of Inclusion in Face Recognition Training Data
on Individual Face Identification [93.5538147928669]
We audit ArcFace, a state-of-the-art, open source face recognition system, in a large-scale face identification experiment with more than one million distractor images.
We find a Rank-1 face identification accuracy of 79.71% for individuals present in the model's training data and an accuracy of 75.73% for those not present.
arXiv Detail & Related papers (2020-01-09T15:50:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.