Learning Invariant Molecular Representation in Latent Discrete Space
- URL: http://arxiv.org/abs/2310.14170v1
- Date: Sun, 22 Oct 2023 04:06:44 GMT
- Title: Learning Invariant Molecular Representation in Latent Discrete Space
- Authors: Xiang Zhuang, Qiang Zhang, Keyan Ding, Yatao Bian, Xiao Wang, Jingsong
Lv, Hongyang Chen, Huajun Chen
- Abstract summary: We propose a new framework for learning molecular representations that exhibit invariance and robustness against distribution shifts.
Our model achieves stronger generalization against state-of-the-art baselines in the presence of various distribution shifts.
- Score: 52.13724532622099
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Molecular representation learning lays the foundation for drug discovery.
However, existing methods suffer from poor out-of-distribution (OOD)
generalization, particularly when data for training and testing originate from
different environments. To address this issue, we propose a new framework for
learning molecular representations that exhibit invariance and robustness
against distribution shifts. Specifically, we propose a strategy called
``first-encoding-then-separation'' to identify invariant molecule features in
the latent space, which deviates from conventional practices. Prior to the
separation step, we introduce a residual vector quantization module that
mitigates the over-fitting to training data distributions while preserving the
expressivity of encoders. Furthermore, we design a task-agnostic
self-supervised learning objective to encourage precise invariance
identification, which enables our method widely applicable to a variety of
tasks, such as regression and multi-label classification. Extensive experiments
on 18 real-world molecular datasets demonstrate that our model achieves
stronger generalization against state-of-the-art baselines in the presence of
various distribution shifts. Our code is available at
https://github.com/HICAI-ZJU/iMoLD.
Related papers
- Invariant Anomaly Detection under Distribution Shifts: A Causal
Perspective [6.845698872290768]
Anomaly detection (AD) is the machine learning task of identifying highly discrepant abnormal samples.
Under the constraints of a distribution shift, the assumption that training samples and test samples are drawn from the same distribution breaks down.
We attempt to increase the resilience of anomaly detection models to different kinds of distribution shifts.
arXiv Detail & Related papers (2023-12-21T23:20:47Z) - DCID: Deep Canonical Information Decomposition [84.59396326810085]
We consider the problem of identifying the signal shared between two one-dimensional target variables.
We propose ICM, an evaluation metric which can be used in the presence of ground-truth labels.
We also propose Deep Canonical Information Decomposition (DCID) - a simple, yet effective approach for learning the shared variables.
arXiv Detail & Related papers (2023-06-27T16:59:06Z) - Disentanglement via Latent Quantization [60.37109712033694]
In this work, we construct an inductive bias towards encoding to and decoding from an organized latent space.
We demonstrate the broad applicability of this approach by adding it to both basic data-re (vanilla autoencoder) and latent-reconstructing (InfoGAN) generative models.
arXiv Detail & Related papers (2023-05-28T06:30:29Z) - Explainable Semantic Medical Image Segmentation with Style [7.074258860680265]
We propose a fully supervised generative framework that can achieve generalisable segmentation with only limited labelled data.
The proposed approach creates medical image style paired with a segmentation task driven discriminator incorporating end-to-end adversarial training.
Experiments on a fully semantic, publicly available pelvis dataset demonstrated that our method is more generalisable to shifts than other state-of-the-art methods.
arXiv Detail & Related papers (2023-03-10T04:34:51Z) - Dynamic Latent Separation for Deep Learning [67.62190501599176]
A core problem in machine learning is to learn expressive latent variables for model prediction on complex data.
Here, we develop an approach that improves expressiveness, provides partial interpretation, and is not restricted to specific applications.
arXiv Detail & Related papers (2022-10-07T17:56:53Z) - Attribute Graphs Underlying Molecular Generative Models: Path to Learning with Limited Data [42.517927809224275]
We provide an algorithm that relies on perturbation experiments on latent codes of a pre-trained generative autoencoder to uncover an attribute graph.
We show that one can fit an effective graphical model that models a structural equation model between latent codes.
Using a pre-trained generative autoencoder trained on a large dataset of small molecules, we demonstrate that the graphical model can be used to predict a specific property.
arXiv Detail & Related papers (2022-07-14T19:20:30Z) - Heterogeneous Target Speech Separation [52.05046029743995]
We introduce a new paradigm for single-channel target source separation where the sources of interest can be distinguished using non-mutually exclusive concepts.
Our proposed heterogeneous separation framework can seamlessly leverage datasets with large distribution shifts.
arXiv Detail & Related papers (2022-04-07T17:14:20Z) - Unsupervised Controllable Generation with Self-Training [90.04287577605723]
controllable generation with GANs remains a challenging research problem.
We propose an unsupervised framework to learn a distribution of latent codes that control the generator through self-training.
Our framework exhibits better disentanglement compared to other variants such as the variational autoencoder.
arXiv Detail & Related papers (2020-07-17T21:50:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.