論文の概要: Stochastic tensor space feature theory with applications to robust machine learning
- arxiv url: http://arxiv.org/abs/2110.01729v5
- Date: Thu, 20 Mar 2025 12:32:40 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-21 16:32:42.178432
- Title: Stochastic tensor space feature theory with applications to robust machine learning
- Title(参考訳): 確率テンソル空間特徴理論とロバスト機械学習への応用
- Authors: Julio Enrique Castrillon-Candas, Dingning Liu, Sicheng Yang, Xiaoling Zhang, Mark Kon,
- Abstract要約: テンソル空間に基づくマルチレベル直交部分空間(MOS)カーフン・ローブ特徴量理論を開発する。
私たちのキーとなる観察は、個別の機械学習クラスは、主に異なる部分空間に存在することができるということです。
血漿データセット(アルツハイマー病神経画像イニシアチブ)の検査では、精度が劇的に向上した。
- 参考スコア(独自算出の注目度): 3.6891975755608355
- License:
- Abstract: In this paper we develop a Multilevel Orthogonal Subspace (MOS) Karhunen-Loeve feature theory based on stochastic tensor spaces, for the construction of robust machine learning features. Training data is treated as instances of a random field within a relevant Bochner space. Our key observation is that separate machine learning classes can reside predominantly in mostly distinct subspaces. Using the Karhunen-Loeve expansion and a hierarchical expansion of the first (nominal) class, a MOS is constructed to detect anomalous signal components, treating the second class as an outlier of the first. The projection coefficients of the input data into these subspaces are then used to train a Machine Learning (ML) classifier. These coefficients become new features from which much clearer separation surfaces can arise for the underlying classes. Tests in the blood plasma dataset (Alzheimer's Disease Neuroimaging Initiative) show dramatic increases in accuracy. This is in contrast to popular ML methods such as Gradient Boosting, RUS Boost, Random Forest and (Convolutional) Neural Networks.
- Abstract(参考訳): 本稿では,確率的テンソル空間に基づくマルチレベル直交部分空間(MOS)カーフン・ローブ特徴量理論を,堅牢な機械学習機能の構築のために開発する。
トレーニングデータは、関連するボヒナー空間内のランダムフィールドのインスタンスとして扱われる。
私たちのキーとなる観察は、個別の機械学習クラスは、主に異なる部分空間に存在することができるということです。
Karhunen-Loeve展開と第1(nominal)クラスの階層的展開を用いて、MOSを構築して異常信号成分を検出し、第2クラスを第1(outlier)として扱う。
これらの部分空間への入力データの投影係数は機械学習(ML)分類器の訓練に使用される。
これらの係数は、基底クラスに対してより明確な分離面が生じる新しい特徴となる。
血漿データセット(アルツハイマー病神経画像イニシアチブ)の検査では、精度が劇的に向上した。
これは、Gradient Boosting、RAS Boost、ランダムフォレスト、(畳み込み)ニューラルネットワークといった一般的なMLメソッドとは対照的である。
関連論文リスト
- Symmetry Discovery for Different Data Types [52.2614860099811]
等価ニューラルネットワークは、そのアーキテクチャに対称性を取り入れ、より高度な一般化性能を実現する。
本稿では,タスクの入出力マッピングを近似したトレーニングニューラルネットワークによる対称性発見手法であるLieSDを提案する。
我々は,2体問題,慣性行列予測のモーメント,トップクォークタグ付けといった課題におけるLieSDの性能を検証した。
論文 参考訳(メタデータ) (2024-10-13T13:39:39Z) - Hodge-Aware Contrastive Learning [101.56637264703058]
単純コンプレックスは、マルチウェイ依存によるデータのモデリングに有効である。
我々は、単純なデータを処理するための対照的な自己教師付き学習手法を開発した。
論文 参考訳(メタデータ) (2023-09-14T00:40:07Z) - Random Smoothing Regularization in Kernel Gradient Descent Learning [24.383121157277007]
古典的ソボレフ空間に属する幅広い基底真理関数を適応的に学習できるランダムなスムーズな正規化のための枠組みを提案する。
我々の推定器は、基礎となるデータの構造的仮定に適応し、次元の呪いを避けることができる。
論文 参考訳(メタデータ) (2023-05-05T13:37:34Z) - Sharp-SSL: Selective high-dimensional axis-aligned random projections
for semi-supervised learning [16.673022545571566]
本稿では,高次元半教師付き学習問題に対する新しい手法を提案する。
これは、データの多くの軸方向のランダムな投影に適用される低次元プロシージャの結果の慎重な集約に基づいている。
論文 参考訳(メタデータ) (2023-04-18T17:49:02Z) - Learning to Bound Counterfactual Inference in Structural Causal Models
from Observational and Randomised Data [64.96984404868411]
我々は、従来のEMベースのアルゴリズムを拡張するための全体的なデータの特徴付けを導出する。
新しいアルゴリズムは、そのような混合データソースからモデルパラメータの(不特定性)領域を近似することを学ぶ。
反実的な結果に間隔近似を与え、それが特定可能な場合の点に崩壊する。
論文 参考訳(メタデータ) (2022-12-06T12:42:11Z) - Subspace clustering in high-dimensions: Phase transitions \&
Statistical-to-Computational gap [24.073221004661427]
部分空間クラスタリングを研究するための単純なモデルは、高次元の$k$-ガウス混合モデルである。
広帯域な高次元状態における統計的に最適な再構成誤差を正確に評価する。
論文 参考訳(メタデータ) (2022-05-26T17:47:35Z) - Meta Learning Low Rank Covariance Factors for Energy-Based Deterministic
Uncertainty [58.144520501201995]
ニューラルネットワーク層のBi-Lipschitz正規化は、各レイヤの特徴空間におけるデータインスタンス間の相対距離を保存する。
注意セットエンコーダを用いて,タスク固有の共分散行列を効率的に構築するために,対角的,対角的,低ランクな要素のメタ学習を提案する。
また,最終的な予測分布を達成するために,スケールしたエネルギーを利用する推論手法を提案する。
論文 参考訳(メタデータ) (2021-10-12T22:04:19Z) - Tensor Laplacian Regularized Low-Rank Representation for Non-uniformly
Distributed Data Subspace Clustering [2.578242050187029]
低ランク表現(LRR)は、サブスペースクラスタリングにおけるデータポイントの局所性情報を破棄する。
本稿では,隣接ノードの変動数を容易にし,データの局所性情報を組み込むハイパーグラフモデルを提案する。
人工および実データを用いた実験により,提案手法の精度と精度が向上した。
論文 参考訳(メタデータ) (2021-03-06T08:22:24Z) - Sparse PCA via $l_{2,p}$-Norm Regularization for Unsupervised Feature
Selection [138.97647716793333]
再構成誤差を$l_2,p$ノルム正規化と組み合わせることで,単純かつ効率的な特徴選択手法を提案する。
提案する非教師付きモデルを解くための効率的な最適化アルゴリズムを提案し,アルゴリズムの収束と計算の複雑さを理論的に解析する。
論文 参考訳(メタデータ) (2020-12-29T04:08:38Z) - Asymptotic Analysis of an Ensemble of Randomly Projected Linear
Discriminants [94.46276668068327]
[1]では、ランダムに投影された線形判別式のアンサンブルを用いてデータセットを分類する。
我々は,計算コストのかかるクロスバリデーション推定器の代替として,誤分類確率の一貫した推定器を開発する。
また、実データと合成データの両方で投影次元を調整するための推定器の使用を実証する。
論文 参考訳(メタデータ) (2020-04-17T12:47:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。